ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ЛИМНОЛОГИЧЕСКИЙ ИНСТИТУТ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

СИДОРОВА ТУЯНА ВАЛЕРЬЕВНА

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ ЭВОЛЮЦИИ БАЙКАЛЬСКИХ СИГОВЫХ РЫБ

1.5.7. Генетика

Диссертация на соискание ученой степени кандидата биологических наук

> Научный руководитель: кандидат биологических наук, доцент Суханова Любовь Васильевна

Иркутск – 2023

СОДЕРЖАНИЕ

СПИСОК СОКРАЩЕНИЙ5
введение
ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР14
1.1. Общие сведения о сиговых видах рыб оз. Байкал (Coregonidae)14
1.2. Популяционная структура байкальских сиговых рыб17
1.2.1. Популяционная структура байкальского омуля17
1.2.2. Популяционная структура байкальского озерного сига19
1.2.3. Популяционная структура байкальского озерно-речного сига20
1.3. Таксономия и филогения сиговых рыб21
1.3.1. Филогения сиговых рыб оз. Байкал25
1.4. Сравнительное исследование транскриптомов сиговых рыб26
1.5. Анализ микробиомов кишечника сиговых рыб
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ
2.1. Филогеографичекий анализ
2.1.1. Сбор образцов
2.1.2. Выделение ДНК, ПЦР и определение нуклеотидных
последовательностей
2.1.3. Филогенетический анализ40
2.2. Микросателлитный анализ
2.2.1. Объекты исследования и характеристика локусов
2.2.2. Выделение ДНК
2.2.3. ПЦР
2.2.4. Электрофорез45
2.2.5. Включение радиоактивной метки (кинирование)
2.2.6. Фиксация серебром45
2.2.7. Статистическая обработка данных46
2.3. Сравнительный анализ транскриптомов мозга методом NGS48

2.3.1. Сбор образцов
2.3.2. Выделение РНК
2.3.3. Конструирование библиотеки кДНК и секвенирование
2.3.4. De-novo сборка транскриптома49
2.3.5. Статистическое сопоставление уровня экспрессии генов
2.3.6. Функциональный анализ транскриптомов
2.4. Сравнение микробиомов кишечников байкальских сига, омуля и их гибридов
первого поколения методом NGS51
2.4.1. Оплодотворение, инкубация и выращивание рыбы
2.4.2. Сбор образцов
2.4.3. Выделение ДНК и высокопроизводительный анализ гена 16S
рРНК53
2.4.4. Биоинформатический и статистический анализы
ГЛАВА З. РЕЗУЛЬТАТЫ56
3.1. Филогеографический анализ56
3.2. Микросателлитный анализ64
3.2.1. Генетическое разнообразие
3.2.2. Генетическая дифференциация и популяционная структура66
3.3. Сравнительный анализ транскриптомов мозга методом NGS71
3.4. Сравнение микробиомов кишечников байкальских омуля, озерного сига и их
гибридов первого поколения методом NGS74
ГЛАВА 4. ОБСУЖДЕНИЕ81
4.1. Филогеографический анализ81
4.1.1. Два важных события в эволюции рода Coregonus
4.1.2. Полифилия <i>C. muksun</i> и <i>C. l. pidschian</i> 84
4.1.3. Происхождение сиговых озера Байкал
4.1.4. Причина недавней дивергенции байкальских омуля и озерного
сига
4.2 Микросателлитный анализ 88

4.3. Сходство и различие в дифференциальных паттернах экспрессии между
телагическим и бентосным экотипами симпатрических пар сигов
4.4. Сравнение кишечных микробиомов байкальских омуля, сига и их гибридов
первого поколения
ВАКЛЮЧЕНИЕ104
ВЫВОДЫ107
СПИСОК ЛИТЕРАТУРЫ109
ПРИЛОЖЕНИЯ139

СПИСОК СОКРАЩЕНИЙ

ДНК – дезоксирибонуклеиновая кислота;

кДНК – комплементарная дезоксирибонуклеиновая кислота;

мтДНК – митохондриальная ДНК;

МЭГ — морфо-экологическая группа;

РНК – рибонуклеиновая кислота;

рРНК – рибосомная рибонуклеиновая кислота;

пн – пар нуклеотидов;

ПЦР-полимеразная цепная реакция;

OTE (OTUs) – операционные таксономические единицы;

УНУ ПАК - Уникальная научная установка «Экспериментальный пресноводный аквариумный комплекс байкальских гидробионтов»

Cyt b – ген цитохрома В;

ERP – ген, кодирующий белок, родственный эпендимину 1;

Fst (фиксированный индекс) – основан на значениях гетерозиготности в пределах популяций и между ними;

GO – Gene Ontology (биоинформатический проект, посвященный созданию унифицированной терминологии для аннотации генов и генных продуктов всех биологических видов);

НКҮ модель – Hasegawa-Kishino-Yano модель;

К – максимальное число групп популяций;

ME – Minimum Evolution (метод минимальной эволюции);

MJ – медиальная сеть;

ML – Maximum Likelihood (метод максимального правдоподобия);

MP – Maximum Parsimony (метод максимальной экономии);

NGL-1 – ген, сходный с геном нетрин-G1 лиганда;

NGS-next generation sequencing (секвенирование нового поколения);

NJ – Neighbor Joining (метод присоединения соседей, или метод ближайших соседей);

RPKM – reads per kilo base of transcript per million mapped reads (количество прочтений на килобазу на картированные риды;

RDP – ribosomal database project (проект рибосомной базы данных)

SD – стандартное отклонение от среднего;

DEGs (ДЭГ) – differentially-expressed genes (дифференциально экспрессирующиеся гены;

CDS – coding DNA sequence (белок-кодирующие последовательности);

UTRs – untranslated region (нетранслируемые области);

eQTL – expression quantitative trait loci (локусы, определяющие количественные характеристики экспрессии);

SNP – single-nucleotide polymorphism (однонуклеотидный полиморфизм);

RNAseq – RNA sequencing (секвенирование PHК);

Hobs (observed heterozygosity) – наблюдаемая гетегозиготность;

Hexp (expected heterozygosity) – ожидаемая гетерозиготность.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Лососевидные рыбы Актуальность. преобладают В северных экосистемах. Сиговые рыбы (Coregonidae) – обширное успешное семейство в большой группе лососевидных рыб. Они занимают первое место по биомассе, являясь доминантными или супердоминантными видами во многих рыбных сообществах Арктики и суб-Арктики. Озеро Байкал уникально тем, что условия в нем схожи с условиями северных водоемов, так как озеро, хотя и находится в бореальной зоне, но расположено высоко над уровнем моря. В отличие от Байкал молодых северных водоемов, имеет длинную непрерывную эволюционную историю, а характерное для озер многообразие экологических ниш особенно выражено благодаря большим глубинам. В Байкале обитает три представителя сиговых рыб. Байкальский озерно-речной сиг Coregonus pidschian Gmelin, 1789 – прибрежный бентофаг, населяет глубины менее 30 м, нерестится в реках и остается там надолго (Скрябин, 1969). Байкальский озерный сиг Coregonus baicalensis Dybowski, 1874 – глубоководный бентофаг, в основном обитает на глубинах 30-100 м, но иногда встречается на глубине до 200 м и нерестится в озере (Скрябин, 1969). Третий представитель – байкальский омуль Coregonus migratorius Georgi, 1775 заходит в реки только для нереста, населяет открытую пелагиаль, эпипелагиаль, бентические слои подводного склона и прибрежно-пелагическую зону Байкала до глубин 350-400 м. Освоив пелагиаль глубоководного водоема, байкальский омуль приобрел фенотип, типичный для пелагических рыб (Smirnov, 1992), из-за чего долго считался подвидом арктического омуля. Изучение сиговых рыб Байкала имеет большое значение для понимания закономерностей формирования биоразнообразия оз. Байкал, их эволюции.

Степень разработанности темы. За приблизительно 200-летнюю историю исследований морфология и экология байкальских сиговых изучена детально, при этом происхождение, родственные связи и эволюция в озере долго были предметом дискуссий. Предпринятые в 90-е годы исследования внутривидового генетического полиморфизма не дали какой-либо общей картины, так как омуль и

сиги изучались отдельно друг от друга и небайкальских видов и разными методами (Яхненко и др., 1992; Суханова и др., 1996; Mamontov, Yakhnenko, 1995; Brzuzan et al., 1998).

В 2000-е годы проведено несколько молекулярно-филогенетических реконструкций, касающихся родственных взаимоотношений сиговых рыб оз. Байкал и других представителей семейства Coregonidae (Politov et al., 2000, 2002; Sukhanova et al., 2004). Полученные результаты позволили авторам предполагать, что все сиговые рыбы Байкала относятся к обширному комплексу С. близкородственных видов lavaretus, ИЛИ выдвигать противоречивую комбинацию гипотез об их близости с комплексом C. lavaretus и, вместе с тем, о родстве байкальского омуля с ледовитоморским (арктическим) омулем *Coregonus* autumnalis Pallas, 1776, весьма далеким от комплекса С. lavaretus, и даже о возможном корневом положении байкальского омуля ко всему роду Coregonus (Politov et al., 2004).

Цель и задачи исследования. Цель настоящей работы – исследовать эволюцию байкальских сиговых рыб на основе анализа меж- и внутривидового генетического полиморфизма и филогеографических реконструкций.

Для достижения цели были поставлены следующие задачи:

1. Провести анализ полиморфизма нуклеотидных последовательностей гена цитохрома *b* мтДНК «истинных» сигов, обитающих в оз. Байкал, его бассейне, на прилегающих территориях и европейской территории России. Включить в анализ основных представителей рода *Coregonus*. На основе полученных данных сделать выводы относительно происхождения байкальских сиговых.

2. Изучить популяционную структуру байкальских сиговых рыб используя анализ полиморфизма пяти микросателлитных локусов ядерного генома.

3. При помощи высокопроизводительного секвенирования РНК (RNAseq) исследовать различия в транскрипционных профилях тканей мозга симпатрической пары близкородственных видов – байкальских омуля и озерного сига. Определить функциональные группы генов, потенциально вовлеченные в адаптивную дивергенцию исследуемых рыб.

8

4. При помощи тотального секвенирования гена 16S рРНК микробиомов кишечника байкальских омуля и озерного сига, а также их гибридов, полученных в условиях *common garden* экспериментов, исследовать взаимосвязь между принадлежностью рыб-хозяев к определенному экотипу и формированием микробного разнообразия.

Научная новизна. Впервые проведен анализ полиморфизма мтДНК сиговых оз. Байкал в контексте происхождения группы «истинных» сигов и рода *Coregonus* в целом. В рамках исследования процессов внутриозерной радиации сиговых рыб впервые: 1) осуществлен анализ популяционной структуры всех байкальских сиговых с использованием микросателлитных локусов; 2) проведен сравнительный анализ уровня экспрессии генов в тканях мозга пелагической (байкальский омуль) и бентической (байкальский озерный сиг) форм; 3) у байкальских омуля, озерного сига и их гибридов изучен состав микробиомов кишечника и выявлены различия в зависимости от экотипа и наследственности.

Теоретическое и практическое значение работы. Включение в общую с байкальскими сиговыми молекулярно-филогенетическую реконструкцию основных представителей рода Coregonus и большого количества членов комплекса C. lavaretus, обитающих в Палеарктике и соседних с оз. Байкал бассейнах, в сочетании с параллельным исследованием внутриозерной эволюции всех трех байкальских видов комплексом молекулярно-генетических методов, позволило объединить в единое целое полученные ранее данные. В результате, сделаны новые выводы о происхождении не только байкальских, но и других представителей рода Coregonus, основного рода сем. Coregonidae. Получено целостное представление о родственных связях и направлениях эволюции сиговых внутри Байкала, важное для понимания и исследования процессов внутриозерной адаптивной радиации. Результаты проведенной работы не только вносят вклад в понимание фундаментальных процессов видообразования, но и имеют большое практическое значение, поскольку позволят совершенствовать технологии искусственного воспроизводства и аквакультуры сиговых рыб

Байкала исходя из особенностей их эволюции и наиболее полной информации о родственных связях между собой и с другими представителями семейства.

Теоретические положения и результаты проведенных исследований использованы при подготовке отчетов о НИР по темам ЛИН СО РАН «Исследование трансформаций состояния водоемов и водотоков Восточной Сибири в сезонных и долговременных аспектах в контексте изменений климата, геологической среды и антропогенных нагрузок» (0279-2021-0005, № гос. регистрации 121032300224-8).

Методология и методы диссертационного исследования. В качестве эволюционных генетических маркеров в исследовании выбрали фрагменты ДНК с разными темпами эволюции, пригодные для исследований на разном уровне: ген *суt b* для исследований на уровне вида и микросателлиты на популяционном уровне. Для исследования разницы экспрессии генов исследуемых видов применяли метод NGS транскриптомов мозга, а для изучения микробиомов кишечника чистых линий байкальских омуля, озерного сига и их гибридов, полученных в условиях common garden экспериментов, – метод тотального секвенирования гена 16S рРНК. В работе применяли следующие молекулярногенетические методы: амплификация целевых фрагментов ДНК с помощью ПЦР, секвенирование ДНК, выделение РНК, синтез кДНК, создание кДНК библиотек и их секвенирование. Филогенетический анализ был проведен с помощью программ MEGA, PhyML, NETWORK, Arlequin, Structure, Population и др. Для анализа транскриптомов мозга было использовано приложение local Blastx, при исследовании уровня экспрессии генов было рассчитано значение RPKM для достоверно различающихся последовательностей. Для сравнительного анализа таксономического состава микробиома кишечника была использована программа Mothur.

Личный вклад автора. Диссертационная работа является результатом исследований автора, выполненным согласно планам исследовательских работ в группе эволюционной генетики лаборатории ихтиологии ЛИН СО РАН. Автор непосредственно участвовал в экспедиционных и экспериментальных работах, в анализе и интерпретации полученных результатов, в написании научных публикаций.

Основные положения, выносимые на защиту:

1. Филогеографический анализ полиморфизма мтДНК выявил доминирующую роль катастрофических геолого-климатических событий в плейстоцене, происходивших на территории байкальского и прилегающих бассейнов, в эволюции рода *Coregonus* в целом и байкальских сиговых, в частности. Около трех миллионов лет назад здесь практически одновременно появились клады, давшие начало основным современным группам рода *Coregonus*: 1) пелядь/ряпушка, 2) белорыбица, 3) тугун, 4) омулевидные сиги и американские ряпушки, 5) «истинные» сиги. Спустя 1,5 млн лет из клады «истинных» сигов выделились байкальские представители этой группы.

2. Несмотря на продолжительное (не менее 1,5 млн лет) обитание предковой формы в оз. Байкал, байкальские омуль и озерный сиг имеют недавнее симпатрическое происхождение, которое может быть приурочено к последним похолоданиям плейстоцена. Байкальский озерно-речной сиг, имеет аллопатрическое происхождение и проник в Байкал около 60 тысяч лет назад, чему, вероятно, способствовало появление ангарского речного стока из озера.

3. Байкальские омуль и озерный сиг репродуктивно изолированы и имеют четко выраженные популяционные структуры, окончательно сформировавшиеся в период климатического оптимума, наступившего после последнего Сартанского оледенения. Различия, выявленные в транскрипционных профилях мозга и составе микробиомов кишечника омуля и озерного сига, согласуются с морфоэкологическими особенностями видов.

Степень достоверности результатов. О достоверности полученных результатов свидетельствуют использование современных молекулярных методов исследования с применением статистических оценок филогенетических деревьев, различий в экспрессии генов и таксономическом составе микрофлоры, воспроизводимость результатов и публикации полученных результатов в рецензируемых журналах. Обсуждение и интерпретация результатов базируется на экспериментальных данных, приведенных в диссертации в виде рисунков и таблиц.

Апробация результатов работы. Результаты работы были представлены на следующих симпозиумах и конференциях: Пятая Верещагинская Байкальская конференция (г. Иркутск, 4-9 октября, 2010); Шестая Верещагинская Байкальская конференция (г. Иркутск, 7-12 сентября, 2015); Московская международная конференция «Молекулярная филогения» (г. Москва, MolPhy-2, 18-21 мая, 2010); XII Международный симпозиум по биологии и менеджменту сиговых рыб (г. Иркутск, 25-30 августа, 2014); XIII Международный симпозиум по биологии и менеджменту сиговых рыб (США, Бейфилд, штат Висконсин (озеро Верхнее), 10-15 сентября, 2017); III Всероссийская научная конференция «Разнообразие почв и биоты Северной и Центральной Азии» (г. Улан-Удэ, 21-23 июня, 2016); 50-й Юбилейный симпозиум общества рыболовства Британских островов (Великобритания, Эксетер, 3-7 июля, 2017); Международная научная конференция, посвященная 100-летию высшего биологического образования в Восточной Сибири (г. Иркутск, 19-20 сентября, 2019).

Публикации. По теме диссертации опубликованы 11 работ, в том числе 3 статьи в журналах из списка ВАК.

Объем и структура работы. Диссертация изложена на 138 страницах, содержит 11 таблиц и 13 рисунков, а также 3 приложения на 79 страницах. Работа представлена в виде глав «Литературный обзор», «Материалы и методы», «Результаты», «Обсуждение», а также «Заключения», «Выводов», «Списка литературы» и Приложений. Список литературы содержит 265 источника, из них 187 на иностранном языке.

Благодарности. Выражаю глубокую признательность к.б.н. Сухановой Любови Васильевне за всестороннюю помощь, опытное руководство и поддержку на протяжении всех лет работы в лаборатории. Выражаю искреннюю благодарность коллективу лаборатории ихтиологии, ультраструктуры клетки и микробиологии за сотрудничество и всестороннюю поддержку, в частности к.б.н. Букину Юрию Сергеевичу, Хабудаеву Кириллу Владимирвичу, к.б.н. Бельковой Наталье Леонидовне, к.б.н. Королевой Анастасии Геннадьевне, за ценные наставления и советы при использовании молекулярно-генетических методов, к.б.н. Огаркову Олегу Борисовичу за предварительное ознакомление с текстом диссертационной работы и важные замечания, к.б.н. Дзюба Елене Владимировне за ценные консультации и рекомендации. Выражаю искреннюю благодарность центру коллективного пользования «Иркутский суперкомпьютерный центр СО РАН» за предоставленные вычислительные ресурсы и его сотрудникам за ценные консультации.

ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР

1.1. Общие сведения о сиговых видах рыб оз. Байкал (Coregonidae)

Семейство Coregonidae в Байкале представлено: омулем, озерным сигом и озерно-речным сигом, каждый из которых по современной таксономической номенклатуре является отдельным видом (Богуцкая, Насека, 2004; FishBase: https://www.fishbase.se/search.php). Характеристика биологии видов дана в таблице 1.

Кроме этого, встречаются межвидовые гибриды (Дрягин, 1936; Берг, 1948, 1949; Николюкин, 1952; Турдаков, 1963), в частности, между байкальскими омулем и озерно-речным сигом, поскольку районы и сроки их нереста частично перекрываются (Скрябин, 1969, Мамонтов, 1988, 2000; Яхненко, Мамонтов, 2006). Между байкальскими омулем и озерным сигом в природе гибриды не отмечены, по-видимому, из-за большой разобщенности по срокам и районам нереста, но могут быть получены искусственным путем (Мамонтов, 1988; Суханова и др., 2011).

Общепринятое название	Валидное название/синоним	Образ жизни, морфология, питание	Нагульный ареал	Нерест* (сроки/расположени е нерестилищ)	Источники
1	2	3	4	5	6
Байкальский озерный сиг	C. baicalensis (Dybowski, 1874) /C. lavaretus baicalensis Dybowski, 1874	Озерный, глубоководный, 22-33 жаберных тычинки, нижний или полунижний рот, рыльная площадка хорошо выражена. Зоофаг с широким спектром питания. Молодь (до трех лет) питается преимущественно рачковым планктоном, особи старшего возраста – зообентосом, воздушными насекомыми и рыбой	Заливы, проливы и мелководья озера и за их пределами до глубин 200 м. В основном населяет глубины 30-100 м.	Ноябрь-февраль / заливы, проливы и мелководья озера.	Скрябин, 1969; Черняев, 1982.
Байкальский омуль <i>C. migratorius</i> Georgi, 1775		Озерно-речной, пелагический, 37-53 жаберные тычинки, конечный рот. Питание: веслоногие ракообразные, макрогектопус и молодь коттоидных рыб. Особи прибрежно-пелагической и придонно-глубоководной морфо-экологических групп (МЭГ) используют в пищу и бентосные организмы.	Пелагическая зона оз. Байкал до глубин 350-400 м: прибрежная пелагиаль, эпипелагиаль, придонные слои подводного склона (прибрежно- пелагическая, пелагическая и придонно- глубоководная МЭГ, соответственно)	Конец сентября - конец октября /притоки озера.	Смирнов, Шумилов, 1974; Черняев, 1982

Таблица 1. Краткое описание биологии байкальских сиговых рыб

1	2	3	4	5	6
Байкальский	C. pidschian	Озерно-речной,	Прибрежная зона озера	Сентябрь – октябрь / притоки	Скрябин 1969;
озерно-речной	Gmelin,1789/	прибрежный, 20-22	(до 20 м) и притоки.	озера (преимущественно реки	Черняев, 1982.
сиг	C. lavaretus	жаберные тычинки,	После нереста остается	Баргузин и В. Ангара), при	
	pidschian	выраженный нижний	в притоках на	температуре 2,5-4,0°С.	
	Gmelin,1789	рот.	продолжительное		
		Питание: моллюски,	время.		
		амфиподы, олигохеты,			
		личинки			
		амфибиотических			
		насекомых, раковый			
		планктон, воздушно-			
		наземные насекомые, на			
		нерестилищах – икра			
		омуля.			

* - Общее для всех видов: начало нереста при температуре 2,5-4,0°С и ниже, продолжительность эмбриональнного периода ~ 6-7 мес.

1.2. Популяционная структура байкальских сиговых

Байкал – большой глубоководный водоем со структурированной водной толщей. Сиговые освоили придонно-склоновую зону от мелководья до глубин 200 м и пелагиаль до глубин 400 м, образовав сложную внутривидовую структуру, определяемую нагульными ареалами популяций и нерестовыми миграциями (Смирнов и др., 2009).

1.2.1. Популяционная структура байкальского омуля

Байкальский омуль нагуливается в озере и нерестится в реках (таблица 1) (Смирнов, Шумилов, 1974; Смирнов и др., 2009). Количество и названия выделяемых популяций соответствуют количеству и названиям рек, в которые он мигрирует на нерест. Наиболее хорошо изучены 6 основных, наиболее многочисленных популяций: северобайкальская (устье рек Верхняя Ангара и Кичера, впадающих в самую северную точку озера), селенгинская, посольская, чивыркуйская, баргузинская и кикинская. Размеры нерестовых мигрантов различаются по популяциям: особи баргузинской популяции омуля имеют размер 240-320 мм, северобайкальской – 260-340 мм, чивыркуйской – 320-460 мм, посольской – 320-440 мм, селенгинской – 310-370 мм. Популяции различаются и по дальности нерестовых миграций. Представители селенгинской популяции омуля размножаются в р. Селенге (1590 км), поднимаясь до 400-500 км от устья (Селезнев, 1942; Сорокин, 1981; Воронов, 1993). Представители северобайкальской популяции омуля нерестятся в р. Кичере на протяжении 50-70 км и р. Верхней Ангаре на протяжении 100-300 км (Тюрин, Сосинович, 1937; Мишарин, 1958; Смирнов, Шумилов, 1974). Представители баргузинской популяции омуля нерестятся в р. Баргузин и поднимаются в ней на 80-250 км (Шулев, 1981). Представители посольской, кикинской и чивыркуйской популяций омуля поднимаются всего на 3-30 км (Мишарин, 1958; Смирнов, Шумилов, 1974; Стерлягова, Картушин, 1980; Smirnov, 1992). Разное количество жаберных тычинок у рыб, принадлежащих разным популяциям омуля свидетельствует о их

разном образе жизни. В соответствии с вышеперечисленными особенностями, все популяции байкальского омуля делят на три морфо-экологические группы (Смирнов, Шумилов, 1974; Смирнов и др., 2009):

1. Представители селенгинской популяции омуля принадлежат к пелагической многотычинковой (44-54 тычинки) группе (пелагическая МЭГ) и нерестятся в самом крупном притоке Байкала – р. Селенге.

2. Представители северобайкальской и баргузинской популяции омуля принадлежат к прибрежной среднетычинковой (38-47 тычинок) группе (прибрежно-пелагическая МЭГ) и нерестятся в средних по протяженности реках.

3. Представители посольской, кикинской и чивыркуйской популяций омуля принадлежат к придонно-глубоководной малотычинковой (35-45 тычинок) группе (придонно-глубоководная МЭГ) и нерестятся в небольших реках – Большая речка, Култучная, Толбозиха и Абрамиха (посольская популяция), Кика (кикинская популяция), Безымянка, Большой и Малый Чивыркуй (чивыркуйская популяция).

Представители селенгинской популяции омуля имеют типичный облик мигранта-планктофага, то есть низкое веретеновидное тело, удлиненный хвостовой стебель, небольшие размеры плавников. Представители кикинской, чивыркуйской и посольской популяций омуля имеют типичный облик придонноглубоководной рыбы, то есть высокое тело, короткий хвостовой стебель и длинные плавники. Представители среднетычинковых популяций омуля, соответственно, занимают промежуточное положение.

Репродуктивная обособленность популяций байкальского омуля подтверждена различными методами (Талиев, 1941; Мухомедиаров, 1942; Мишарин, 1953, 1958; Ушаков и др., 1962; Мишарин, Тюменцев, 1965; Смирнов, Шумилов, 1974; Мамонтов, Яхненко, 1987; Суханова и др., 1996, 1999).

В 1976 году впервые появилась информация о существовании популяции байкальского омуля, изолированной от Байкала непроходимыми порогами р. Кичеры в озерах Кулинда и Верхнекичерское (Смирнов, Моложников, 1981). В 1987 году опубликовано подробное описание ее биологии (Смирнов и др., 1987 б),

однако степень репродуктивной обособленности генетическими методами не исследовалась.

1.2.2. Популяционная структура байкальского озерного сига

Байкальский озерный сиг нагуливается в озере, а нерестится в его мелководных участках (таблица 1). В соответствии с расположением нерестилищ и нерестовых миграций описаны три популяции: маломорская (пролив Малое Море), чивыркуйская (Чивыркуйский залив) и селенгинская (Селенгинское мелководье) (Крогиус, 1933; Скрябин, 1969; Яхненко и др., 1992; Смирнов и др., 2009). Для наиболее изученных популяций отмечают два максимума нереста: осенне-зимний (ноябрь) и зимний (декабрь-январь), причем, ноябрьский максимум чивыркуйской популяции озерного сига практически уничтожен промыслом (Черняев, 1982; Мамонтов, 1996).

Представители маломорской популяции озерного сига имеют самые длинные жаберные дуги и нижнюю челюсть, короткую верхнюю челюсть и наибольшее число часто расположенных жаберных тычинок, большие глаза, наименьшую ширину лба, длинный хвостовой стебель и наименьшие непарные плавники. Все перечисленные характеристики говорят о представителях маломорской популяции озерного сига как о хороших мигрантах. Эти рыбы питаются мелким кормом: моллюсками (46,1%) и амфиподами (41,7%), обитающими на илистых и песчанных грунтах в зоне глубин 50-200 м.

Представители чивыркуйской популяции озерного сига имеют наименьшее число коротких и редко расположенных жаберных тычинок, небольшие глаза и питаются крупным кормом, так как живут на мелководье, наименьшее постдорзальное и антианальное расстояния и наибольший анальный плавник, что помогает им совершать резкие короткие броски во время охоты на рыб или крупных амфипод. Для них характерно самое нижнее расположение рта и наименьшая высота рыльной площадки, что обусловлено особенностями питания. В основном они питается молодью песчаной широколобки *Cottus kessleri*

Dybowski, 1874 и желтокрылки *Cottocomephorus grewingkii* Dybowski, 1874, которые обитают в литорали на глубине 2-30 м. Рацион их состоит на 69,4% из молоди пелагических бычков рода *Cottocomephorus* и на 22,5% из амфипод.

Представители селенгинской популяции озерного сига имеют наиболее короткую жаберную дужку с самыми длинными и часто расположенными жаберными тычинками и наименьшее число чешуй в боковой линии, высокое тело, длинные грудные и брюшные плавники, что говорит о придонном образе жизни. Рыбы питаются более мелким кормом на глубинах 25-50 м. Основу питания составляют мелкие амфиподы (80,8%).

Таким образом, у байкальского омуля разделение на популяции идет путем адаптаций к обитанию в разных биотопах пелагиали озера, а у байкальского озерного сига к использованию кормовых организмов, обитающих в разных биотопах бентали (Смирнов и др., 2009).

Ранее репродуктивная изоляция популяций байкальского озерного сига исследовалась изоферментным анализом (Яхненко и др., 1992). Было показано, что, несмотря на морфологическую дифференциацию, между описанными популяциями существует значительный обмен генами.

1.2.3. Популяционная структура байкальского озерно-речного сига

Байкальский озерно-речной относится наиболее сиг к крупным представителям пыжьяновидных сигов, населяет прибрежную мелководную зону озера, а на нерест мигрирует в средние и крупные реки северного и восточного Байкала (таблица 1). Хорошо описаны северобайкальская побережий И баргузинская популяции озерно-речного сига, которые нерестятся в верховьях рек Баргузин и Верхняя Ангара и их притоках, соответственно (Скрябин, 1969; Мамонтов, Яхненко, 1995). Анализ изоферментов, меристических признаков, размерно-весового состава, темпа роста и созревания производителей подтвердил наличие репродуктивной изоляции популяций (Яхненко и др., 1992). Было показано, что генетические различия между представителями северобайкальской и баргузинской популяций озерно-речного сига выше, чем между популяциями

байкальскоих омуля (Мамонтов, Яхненко, 1987) и озерного сига (Яхненко и др., 1992).

Упоминается наличие нерестовых миграций байкальского озерно-речного сига из озера в р. Селенгу, а также наличие в бассейне реки жилой популяции или популяций (устные сообщения), что требует специальных исследований.

1.3. Таксономия и филогения сиговых рыб

Неопределенность И противоречивость таксономии рыб сиговых прослеживается, начиная от самых крупных таксонов (семейства) и заканчивая внутривидовыми формами и популяциями (Богуцкая, Насека, 2004). Так, в отличие от зарубежной точки зрения статус сиговых как семейства Coregonidae впервые был подробно обоснован П.Л. Пирожниковым с соавторами (Пирожников и др., 1975) и в современной отечественной литературе каждой из групп (хариусовым, сиговым и лососевым) чаще присваивают статус семейства. Семейство подразделяют на три рода: Prosopium, Stenodus и Coregonus, однако выделение рода Stenodus отдельно от Coregonus не подтверждено генетическими данными, а систематика рода *Coregonus* на уровне видов очень противоречива. Филогенетические схемы, основанные на генетических данных по обширному числу изученных «форм», также оставляют широкое поле для разнообразных гипотез относительно их статуса (Politov 2017). Крайние точки зрения «объединителей» и «дробителей» суммированы в обзорных публикациях (Решетников, 1980, 1995; Kottelat, 1997.). В последнее время, по мнению Ю.П. Решетникова и соавторов (http://www.sevin.ru/vertebrates/; Атлас ..., 2002), превалирует тенденция выделять все описанные ранее формы и подвиды в самостоятельные виды. Для рыб Центральной и Западной Европы это выполнено М. Коттела с соавторами (Kottelat, 1997; Kottelat, Freyhof, 2007), а для России – Н.Г. Богуцкой и А.М. Насека (2004).

Особенно сложную группу представляют собственно сиги (*C. lavaretus*). В этой группе выделено много подвидов, морф и экологических форм,

таксономический и номенклатурный статус которых зачастую не носит формального характера. Еще в 70-е годы прошлого столетия А.Г. Скрябиным были проведены широкомасштабные исследования морфологии и биологии представителей комплекса C. lavaretus, обитающих верховьях бассейна Лены, в озерах Забайкалья, Байкала. Кроме того, были использованы литературные данные по бассейнам Оби, Енисея, Лены и Амура. Проанализировав все данные, А.Г. Скрябин сделал следующий вывод: «...Диагностические признаки подвидов сигов, а, по нашему мнению, озерных и речных экотипов полиморфного вида зависят от условий их обитания и появляются независимо от географического положения водоемов. Эти признаки характеризуют лишь экологическую принадлежность групп популяций к водоемам с различным водообменом, численностью и биомассой организмов планктона И бентоса. Фенотип полиморфного вида пока не устоялся в связи с изменчивостью условий его существования...» (Скрябин, 1979). Все формы А.Г. Скрябин поделил на четыре группы: 1) озерные, живущие в придонных слоях озер; 2) озерно-речные; 3) речные и 4) озерные – обитатели толщи вод. Представители первых трех групп имеют малое количество жаберных тычинок, нижний или полунижний рот, а по типу питания относятся к бентофагам. Четвертая группа – многотычинковые планктофаги. Сложную группу семейства Coregonidae представляют собой пресноводные пелагические сиговые Северной Америки, которые образуют комплекс «Coregonus artedi». Комплекс условно разделен на 8 видов, но таксономисты морфологи не выделили их четкие диагностические признаки, по причине крайней морфологической и экологической изменчивости (Turgeon, Bernatchez, 2003).

Ситуация прояснилась благодаря использованию молекулярнофилогенетических методов. Было установлено, что эволюция современных видов сигов тесно связана с геолого-климатической историей. Основные генетические линии сиговых сформировались до наступления длительных плейстоценовых похолоданий и сохранились в районах, в которых не было покровного

Филогеографические олеленения. исследования *«C. lavaretus* complex» И «C. artedi complex» (Bernatchez, Dodson, 1994; Bernatchez et al., 1996; Pigeon et al., 1997; Douglas et al., 1999; Lu et al., 2001; Turgeon et al., 1999; Turgeon, Bernatchez, 2001a, 2001b, 2003; Østbye et al., 2006; Østbye et al., 2005) на основе полиморфизма микросателлитных локусов и мтДНК показали, что генетические различия внутри комплексов слабо соответствуют принятой таксономии. При этом существование сходных экологических форм в разных точках ареала является следствием сетчатой эволюции (в результате гибридизации и недавней параллельной эволюции сходных фенотипов в не связанных между собой водоемах). Все многообразие форм объеденено в два таксона: C. lavaretus и C. artedi (Turgeon, Bernatchez, 2003). Детальные исследования многочисленных форм/видов «C. lavaretus complex» на территории Сибири и Дальнего Востока (Бочкарев, Зуйкова, 2006, 2009а, 2009б, 2010; Bochkarev et al., 2013; Бочкарев, Гафина, 1996; Бочкарев, 2000; Bochkarev et al., 2011; Бочкарев и др., 2020), подтвердили роль процессов вторичного расселения и гибридизации в эволюции сиговых рыб, о которых также писал А.М. Мамонтов (Мамонтов, 2000).

Существование естественных гибридов зафиксировано не только между близкородственными полиморфных видами комплексов, но И между представителями рода *Coregonus* различной степени дивергенции. Б.М. Медников с соавторами (Медников и др., 2000) выдвинули гипотезу о том, что для сиговых характерен специфический способ видообразования, а именно, они образуют плодовитых гибридов первого поколения, которые имеют черты гетерозиса. Гибриды второго поколения нежизнеспособны или маложизнеспособны, поэтому гибридам первого поколения необходимо возвратное скрещивание с формами родительских особей. Таким образом, сиговые могут обмениваться генами, сохраняя при этом видовую специфичность. Вероятно, именно этот способ репродуктивной изоляции, допускающий межвидовой обмен генами, породил такое огромное разнообразие форм сиговых. И возможно, некоторые виды сиговых произошли именно путем межвидовой гибридизации (Политов, Гордон,

1998; Попов, Сендек, 2003). Процессы симпатрического видообразования сопутствуют сетчатой эволюции. Бодали с соавторами (1992) на основе данных аллозимного анализа установили, что карликовая форма американского сельдевидного сига (Coregonus clupeaformis Mitchill, 1818) произошла от нормального сига в постледниковое время (Bodaly et al., 1992). Сиги из оз. Комо в провинции Онтарио также имеют сосуществующие формы: нормальную и карликовую. Их возникновение равновероятно связывают как с географическим, так и с симпатрическим видообразованием. Многочисленные морфологически различающиеся формы так называемых «ряпушек» комплекса *C. artedi*, обитателей Великих Озер Северной Америки, известных под разными видовыми названиями, генетически ближе в пределах озера, чем морфологически сходные формы из разных озер (Turgeon, Bernatchez, 2001a, 2001b). Генетические различия в пределах одного водоема при этом сопровождаются образованием форм с количеством жаберных тычинок (таксономический признак). разным с предпочтением различных глубин обитания и разным репродуктивным поведением. По-видимому, эти признаки фенотипические и имеют адаптивное значение при заселении имеющихся экологических ниш.

обзоре по сиговым рыбам, обитающим на территории России, В Д.В. Политов (Politov, 2017) подчеркивает, что общая морфоэкологическая пластичность, размывание границ видов вследствие гибридизации и интрогрессии генов, сетчатая эволюция, существование множества симпатрических форм делают задачу инвентаризации биоразнообразия сиговых рыб сложной, если она основана исключительно на морфологии. Комбинированное использование множества ядерных и митохондриальных молекулярно-генетических маркеров обычно вносит порядок в хаос таксономии, поскольку структура ДНК, как правило, менее чувствительна к конвергенции и способна датировать события видообразования и раскрывать четкие эволюционные паттерны. В своем обзоре автор предлагает специальных простых алфавитно вместо создания упорядоченных контрольных списков использовать эволюционный генетический

подход, основанный на молекулярных маркерах в сочетании с тщательным анализом морфологии и анатомии рыб. Это позволяет выстроить структурированную иерархическую систему эволюционных линий и выделить около 10 основных линий в пределах рода *Coregonus*, являющегося центральным в сем. Coregonidae.

1.3.1. Филогения сиговых рыб оз. Байкал

На протяжении первых 10 лет текущего столетия выполнен ряд молекулярно-филогенетических работ, посвященных взаимоотношениям байкальских сиговых между собой и с другими представителями семейства Coregonidae. На основе этих данных были сделаны следующие выводы:

– отсутствует близкое родство между байкальским и ледовитоморским омулями (Sukhanova et al., 2000, 2002; Politov et al., 2000, 2002);

– существуют значительные генетические различия между байкальскими сигами, озерно-речным и озерным, в то время как, между байкальскими озерным сигом и омулем наблюдается теснейшее родство (Politov et al., 2000, 2002; Sukhanova et al., 2000, 2002);

– обнаружено сходство последовательностей мтДНК байкальского озерноречного сига и пыжьяна р. Енисей (район р. Нижняя Тунгуска) (Baldina et al., 2007);

– амурский сиг *Coregonus ussuriensis* Berg, 1906 близок к эволюционной ветви байкальских сиговых по сравнению с другими сибирскими видами рода (Baldina et al., 2007).

Основываясь на всех этих исследованиях, авторы остановились на гипотезе о принадлежности всех байкальских сиговых к комплексу *C. lavaretus* (Sukhanova et al., 2004), либо гипотезе, совмещающей выводы о близости байкальских сиговых к комплексу *C. lavaretus* и о предковости байкальского омуля по отношению ко всей группе *C. autumnalis*, а также возможном его базальном положении внутри рода *Coregonus* (Politov et al., 2004). Таким образом, сиговые Байкала возможно являются древними и близкими к предковым формам рода

Coregonus (Politov, 2017). Однако целостной картины появления и эволюции сиговых рыб в Байкале предложено не было. Современный взгляд сформировался в результате представляемых в данной работе комплексных молекулярнофилогенетических исследований происхождения, родственных связей и анализа популяционной структуры байкальских сиговых в контексте эволюции всего рода (Sukhanova et al., 2012).

1.4. Сравнительное исследование транскриптомов сиговых рыб

Выяснение геномных основ локальной адаптации дивергирующих популяций, которая может приводить к экологическому видообразованию - одно из наиболее интересных исследовательских направлений последних десятилетий. Концепция локальной адаптации предполагает популяционный фенотипический ответ на ограничения, связанные с естественным отбором, зависящим от особенностей среды обитания. Эту концепцию подтверждает ряд примеров появления независимо эволюционирующих, фенотипически отличных близкородственных видов (Endler, 1986; Orr, 2005; Losos, 2011). В основе параллельной фенотипической эволюции могут лежать дивергенция одних и тех же геномных регионов (Conte et al., 2012), изменения разных генов, вовлеченных в сходные биологические пути (Cohen, Dibbs, 1989), и изменения паттернов дифференциальной экспрессии генов в течение адаптивной дивергенции (Manceau et al., 2011; Harrison, 2012; Pavey et al., 2010). Адаптивные изменения на уровне генома, как правило, затрагивают регуляцию работы генов, приводя к фенотипическим изменениям (Rebeiz et al., 2009), в то время как случайные изменения в последовательности нуклеотидов могут приводить к изменению структуры белков и влиять на жизнеспособность. Генетическая изменчивость может быть результатом параллелизма на молекулярном уровне, когда мутации возникают в одних и тех же генах независимо (Jones et al., 2012; Manceau et al., 2010). Такие мутации обычно связаны с локусами, имеющими большой эффект, определенного контролирующими экспрессию фенотипического признака (моногенная архитектура признака (Manceau et al., 2010)). Это контрастирует с

полигенной архитектурой наиболее сложных признаков, включая те, которые обычно участвуют в экологическом видообразовании и в адаптации в более широком смысле (Gagnaire, Gaggiotti, 2016; Yeaman, 2015), для таких признаков постоянная генетическая изменчивость обычно рассматривается как важный источник адаптивных мутаций, хотя происхождение постоянных вариантов может быть сложным и разнообразным (Welch, Jiggins, 2014).

Недавние исследования показали, что постоянная изменчивость генома является следствием гибридизации в прошлом (Roesti et al., 2014; Meier et al., 2017; Rougeux et al., 2017). Несмотря на растущее число работ, подчеркивающих фундаментальную роль постоянных вариаций как основного топлива для адаптаций (Barrett, Schluter, 2008; Schrider, Kern, 2017), уделяется мало внимания роли постоянных генетических вариаций в параллельной фенотипической популяций (Nelson, Cresko, 2018). Разрешающая способность эволюции современных геномных анализов позволяет выявить сложные полигенные признаки, участвующие в локальной адаптации (Yeaman et al., 2016; Babin et al., 2017; Bay et al., 2017; Harrison et al., 2017; Jain, Stephan, 2017), однако механизмы параллельного видообразования не до конца понятны.

Как уже упоминалось выше, у сиговых процессы симпатрического видообразования сопутствуют сетчатой эволюции. Особенно детально это изучено на группе собственно сигов. Существование сходных экологических форм в разных регионах является в этой группе следствием гибридизации и недавней параллельной эволюции (Douglas et al., 1999; Bernatchez, Dodson, 1990; Bernatchez et al., 1991; Pigeon et al., 1997; Østbye et al.,2005, 2006; Rougeux et al., 2017), так американский сельдевидный сиг и *C. lavaretus* Linnaeus,1758 (обыкновенный сиг), обитающие в Северной Америке и Евразии, представляют группу собственно сигов на двух континентах. Дивергировав не менее 500 тыс. лет назад (Bernatchez et al., 1991; Bernatchez, Dobson, 1994;), североамериканский и европейский сиги продолжают жить в сходной среде, предпочитая холодные пресноводные озера (Bernatchez et al., 1991; Douglas et al., 1999; Østbye et al., 2005, 2006;). В процессе

эволюции этих видов появись бентические и пелагические формы, занявшие соответствующие экологические и трофические ниши. Пелагические формы отличаются от бентических не только средой обитания и трофическими ресурсами. Они имеют более высокую скорость метаболизма и более активное плавательное поведение, связаное с добычей пищи и бегством от хищников (Trudel et al., 2001; Bernatchez et al., 1999; Rogers et al, 2002), из-за этого меньше энергии тратится на рост, и, по сравнению с бентическими сигами, пелагические формы меньше по размеру (Trudel et al., 2001; Rogers et al., 2002). Наблюдаются также другие различия в морфологии и жизненном цикле (Rogers et al., 2007). Как правило, все эти признаки являются полигенными (Gagnaire et al., 2013; Laporte et al., 2015).

Оба, каждый на «своем» континенте, американский сельдевидный сиг и обыкновенный сиг дивергировали в период климатических колебаний во время позднего плейстоцена. Сначала их дивергенция была аллопатрической, затем последовали вторичные контакты (Rougeux et al., 2017) с последующей симпатрической специализацией на пелагическую и бентическую формы. Во время аллопатрической фазы, длившейся около 60 тыс. лет, накопилась геномная несовместимость. Однако после вторичного контакта около 12 тыс. лет назад произошло смешение признаков, приводящих к фенотипической и экологической дивергенции симпатрических пар (Rougeux et al., 2017; Bernatchez, Dobson, 1990; Bernatchez et al., 1991; Pigeon et al., 1997). Именно поэтому группа собственно сигов является одним из перспективных объектов для исследований в области параллельного видообразования.

Анализ структуры генов и их экспрессии в парах пелагических и бентических видов позволил по-новому взлянуть на геномные основы параллельной адаптации и параллельное экологическое видообразование. На протяжении нескольких лет анализ дифференциальной экспрессии генов у симпатрических пелагической и бентической форм в природе и эксперименте проводился на американском сельдевидном сиге (St-Cyr et al., 2008; Jeukens et al.,

28

2009, 2011; Evans, Bernatchez, 2012; Evans et al., 2013; Rougeux et al., 2017). Следующим этапом явились исследования дифференциальной экспрессии у пелагических и бентических родственных форм на разных континентах (Rougeux et al., 2019). Было проанализировано 6 симпатрических пар видов из Северной Америки, Норвегии и Швейцарии: проведена *de novo* сборка транскриптомов на основе данных RNAseq, охарактеризованы вариации генома и дифференциальная экспрессия генов. Важным результатом анализа является то, что пары недавно разошедшихся видов на обоих континентах обнаруживают значительный параллелизм в дифференциальной экспрессии генов, связанных с адаптацией к пелагической и бентической экологическим нишам. Выявление значимых ДЭГ (DEGs) (дифференциально экспрессирующихся генов - differentially-expressed genes), участвующих в энергетическом метаболизме, иммунном ответе или клеточном цикле, совпадает с предыдущим транскриптомным анализом, проведенном на американском сельдевидном сиге, (St-Cyr et al., 2008; Jeukens et al., 2009, 2010; Dalziel et al., 2017). В результате этих работ было показано, что параллельные паттерны транскрипционных ответов на уровне генов, генных сетей функций биологических сопровождают параллельное фенотипическое И расхождение среди независимо эволюционирующих пар видов.

Как предсказывалось теоретически (Yeaman, 2015; Slatkin, Charlesworth, 1978), было обнаружено большее количество ДЭГ, связанных с дивергенцией видов с поправкой на иерархическую структуру популяции по сравнению с обобщенной линейной моделью. В соответствии с результатами отрицательной биномиальной обобщенной линейной модели, анализ избыточности позволил выявить параллелизм в генетических основах фенотипической и экологической дивергенции путем выявления параллельных ДЭГ между пелагическими и бентическими видами. Кроме того, было подтверждено, что эти ДЭГ участвуют в нескольких метаболических путях, связанных с энергетикой, ростом, метаболизмом и регуляцией клеточного цикла. Этот подход также позволил обнаружить конгрузнтные сигналы экспрессии в различных генных системах, где

29

одинаковый эффект на фенотип может быть достигнут с помощью регуляции различных генов благодаря сложности и избыточности мультигенных регуляторных систем (Yeaman, 2015). Таким образом, результаты, полученные в системе американский сельдевидный сиг/обыкновенный сиг, подчеркивают повторяющееся действие естественного отбора на сходные полигенные основы фенотипических признаков (Rogers et al., 2007; St-Cyr et al., 2008; Jeukens et al., 2009, 2011; Gagnaire et al., 2013).

Помимо трансконтинентального параллелизма в межвидовой дивергенции на транскрипционном уровне, Rougeux с соавторами (Rougeux et al., 2019) обнаружили параллелизм между пелагическим и бентическим видами на уровне нуклеотидных последовательностей. Отличия составили 15% от общего числа нуклеотидов между сходными парами видов, что соответствует тому, что было обнаружено в других системах (в диапазоне от 6 до 28%) (Deagle et al., 2012; Ravinet et al., 2015; Westram et al., 2014; Le Moan et al., 2016; Meier et al., 2018), также было обнаружено существенное количество генов, проявляющих общий, то есть транс-видовой, полиморфизм среди линий комплекса Coregonus. Для этих генов паттерны генетического разнообразия и насыщенности ДЭГ между пелагическим и бентическим видами предполагают действие дивергентного отбора в присутствии потока генов (Charlesworth et al., 1997), поддерживающего аллели, связанные с различным уровнем экспрессии между симпатрическими 1997). видами (Charlesworth et al., Генетическая дивергенция между симпатрическими пелагическим и бентическим видами в генах с транс-видовым полиморфизмом была выше по сравнению со средним уровнем абсолютной дивергенции в генах без транс-видового полиморфизма. Это может отражать сбалансированное поддержание расходящихся аллелей у симпатрических пар видов в течение длительного времени посредством отбора и гибридизации (Ma et al., 2017; Han et al., 2017).

Одно из возможных объяснений этого очевидного парадокса может заключаться в том, что во всех изученных здесь симпатрических парах поток

генов сохраняется между пелагическим и бентическим сигами в каждом озере, способствует сохранению сбалансированного полиморфизма аллелей, что присущих каждому виду в каждом из озер. Из-за полигенной природы черт, находящихся под давлением дивергентного отбора, интенсивность отбора, действующего на каждый лежащий в основе признака локус, будет слабым (Le Corre, Kremer, 2012), так что даже небольшой поток генов может поддерживать пропорциональный полиморфизм внутри каждой пары видов. Альтернативным объяснением может быть то, что сбалансированный отбор среди сестринских родственных видов действует на локусы, лежащие в основе полигенных признаков и без того перегруженных стабилизирующим отбором, позволяющим поддерживать полиморфизм путем подавления слабого дивергентного отбора (Turelli, Barton, 2004). Идентификация ортологичных генов с транс-видовым полиморфизмом связана с их дифференциальной экспрессией между бентическим И пелагическим видами. Существование этих генов поддерживается цисдействующими SNP, влияющими на количество транскриптов. Кроме того, существование ДЭГ с транс-видовым полиморфизмом предполагает долгосрочное действие некоторой формы стабилизирующего отбора, благодаря которому сохранился наследуемый полиморфизм, существовавший еще до региональной и континентальной дивергенции разных пелагических и бентических пар видов.

Согласно теории и эмпирическим исследованиям (Zheng et al., 2011), анализ ортологичных генов подтверждает роль полиморфизма, источником которого являются постоянные генетические изменения как в белок-кодирующих последовательностях (CDS), так и в регуляторных мотивах (например, нетранслируемых регионах UTRs), в процессе адаптивной дивергенции между родственными видами пелагического и бентического сига на обоих континентах (Zheng et al., 2011). Например, параллельно обнаружены цис-eQTL в 3'UTR гена пируваткиназы, влияющие на уровень экспрессии этого гена у обоих видов. Учитывая важность 3'UTRs в регулировании процесса транскрипции и количества транскриптов (Merritt et al., 2008; Wittkopp, Kalay, 2011), такие 3'UTR SNP могли

подвергаться дивергентному отбору между пелагическим и бентическим видами и поэтому не утрачивались популяцией в течение длительного периода времени и сохранялись с пропорциональной частотой в любой пелагической и бентической паре. Следовательно, вероятно, что такой цис-eQTL мог быть следствием постоянной генетической изменчивости и естественного отбора на повышение частоты аллелей, изменяющих уровень экспрессии центрального гена энергетического метаболизма у пелагического сига на обоих континентах.

На основе проведенного анализа обширного транскриптомного набора данных было сделано заключение об эффекте полигенного дивергентного отбора, действующего на сложные черты, различающиеся между симпатрическими бентическим и пелагическим видами как у американского сельдевидного сига, так и у обыкновенного сига (Gagnaire et al., 2013; Laporte et al., 2015). Полученные подтвердили более результаты ранние исследования, посвященные дифференциальной экспрессии генов у симпатрических пелагического и бентического видов (St-Cyr et al., 2008; Jeukens et al., 2009, 2011;), и, более того, выявили параллельные закономерности между видами, разошедшимися как минимум полмиллиона лет назад и обитающими на обоих континентах. Кроме того, они показали влияние полигенного отбора на гены, связанные с фундаментальными и ограниченными метаболическими путями, например, с энергетическим обменом (Dalziel et al., 2017).

Байкальская симпатрическая пара видов, пелагический омуль и бентический озерный сиг, адаптированная к тем же нишам, что американские и европейские пары, также представляет большой интерес с точки зрения параллельных паттернов транскрипции генов, вовлеченных в адаптивную дивергенцию. Это еще одна возможность проверить гипотезу долгосрочного действия некой формы стабилизирующего отбора, благодаря которому возможно сохранение наследуемого полиморфизма, существовавшего еще до региональной и континентальной дивергенции, поскольку байкальские представители являются членами еще одной, третьей дивергентной клады собственно сигов сопоставимого

32

возраста, не покидавшей озеро как до, так и после расхождения по континентам двух вышеупомянутых, североамериканской и европейской клад (Sukhanova et al., 2012). Соответственно, во время плейстоценовых колебаний климата расхождение на пелагическую и бентическую формы многократно повторялось в одном и том же водоеме в течение длительного геологического периода (Sukhanova et al., 2012), в отличие от Европы и Америки, где пары симпатрических видов являются результатом послеледниковых вторичных контактов между аллопатрическими ледниковыми изолятами.

Таким образом, озеро Байкал является еще одним уникальным местом для изучения генетической и фенотипической дивергенции между симпатическими экотипами сиговых рыб (Bychenko et al., 2014). Также, можно предположить, что в Байкале, по сравнению с озерами Северной Америки и Европы, отбор действует на пелагический экотип еще сильнее. Об этом свидетельствует полная репродуктивная изоляция экотипов по времени (осень / зима) и месту (река / озеро) нереста (Скрябин, 1969), а также выраженная внутривидовая фенотипическая структура пелагического экотипа (Smirnov, 1992).

1.5.Анализ микробиомов кишечника сиговых рыб

Хорошо известно, что симбионты оказывают значительное влияние на своего хозяина, однако исследование их возможной роли в процессе видообразования хозяина все еще находится в зачаточном состоянии (Rawls et al., 2004; Rosenberg, Zilber, 2016; Alberdi et al., 2016; Brucker, Bordenstein, 2012; Damodaram et al., 2016; Shropshire et al., 2016; Macke et al., 2017; Clements et al., 2014). В нескольких исследованиях применялись методы NGS для изучения микробиома позвоночных животных в их естественной среде и, в частности, у пресноводных рыб (Sevellec et al., 2014; Baldo et al., 2015, 2017; Sullam et al., 2015; Smith et al., 2015; Hata et al., 2014). Исследование взаимоотношений между микробиотой и хозяином важно для полного понимания того, как животные адаптируются к окружающей среде (Boutin et al., 2013, 2014).

33

Упомянутые выше симпатрические пары карликовой (пелагической) и нормальной (бентической) экологических форм американского сельдевидного сига (C. clupeaformis species complex) озерной провинции Квебек являются одной из удачных моделей для такого рода исследований. Канадскими учеными проведена серия работ по изучению микробиомов симпатрических пар американского сельдевидного сига из пяти озер с использованием методов NGS (Sevellec et al., 2014, 2018, 2019). В 2014 году авторы сравнили микробиоту почек симпатрических пар, используя двойную гнездовую ПЦР и пиросеквенирование 454 гена 16S рРНК с целью проанализировать различия в сообществах почечных бактерий карликовых и нормальных форм. В целом (за исключением одного озера) между озерами и формами не было значительных различий. Различия в составе бактерий между формами сига не были параллельными среди озер. В соответствии с более высоким разнообразием типов добычи, почки придонной формы сига имели более разнообразное бактериальное сообщество, и только эта была параллельной среди озер. Эти результаты картина дополнили предшествующие молекулярно-биологичесие исследования, показавшие, что бентической и пелагической форм обусловлено как адаптивное расхождение параллельными, так и непараллельными экологическими условиями в озерах (Bernatchez et al., 2010; Lu, Bernatchez, 1998; Landry, Bernatchez, 2010).

В 2018 году М. Sevellec с соавтороами (Sevellec et al., 2018) секвенировали области V3-V4 гена 16S рРНК кишечной микробиоты на платформе Illumina. В этой работе также сравнивались микробиомы среди симпатрических пар из пяти озер, а также сообщества водных бактерий. Выявлено сильное влияние хозяина (и бентической, и пелагической формы) на кишечную микробиоту с выраженным сохранением основной «коровой» кишечной микробиоты (в среднем ~ 44% общих параллелизма родов). Однако четких доказательств между озерами не пелагической наблюдалось: непараллельные различия между бентической и формами наблюдались в трех озерах, тогда как аналогичный таксономический состав наблюдался для двух других пар. Выявленное отсутствие параллелизма

подчеркивает сложность взаимодействий хозяина и его микрофлоры и предполагает, что направление отбора может быть различным.

В 2019 году М. Sevellec с соавторами (Sevellec et al., 2019) снова секвенировали область V3-V4 гена 16s рРНК кишечной микробиоты на платформе Illumina. В той же самой системе пяти симпатрических пар бентической и пелагической форм американского сельдевидного сига исследовали транзиторные (аллохтонные микробные сообщества) кишечной микробиоты у природных особей и в контролируемых условиях, включая реципрокные гибриды. Проведен тест на параллельность транзиторной кишечной микробиоты среди симпатрических пар; тест на различия среди бентической, пелагической и гибридных форм, выращенных в идентичных условиях эксперимента, а также сравнивалась микробиота диких и аквариальных рыб. У особей из естественной среды обитания было выявлено значительное влияние хозяина на таксономический состав микробиоты. В контролируемых условиях эффект хозяина также был значительным. Микробиота обоих реципрокных гибридов не отличалась от той, которая наблюдалась в родительских формах, но наблюдался материнский эффект. Шесть родов сформировали бактериальное ядро, которое присутствовало и в экспериментальных, и в диких рыбах, предполагая горизонтальную передачу микробиоты и/или отбор на общий набор бактерий. В заключение, авторы подчеркивают, что транзиторная микробиота кишечника рыб является результатом сложных взаимодействий между генетическим фоном хозяина и условиями окружающей среды. Преобладающее влияние окружающей среды на микробиоту, которое они наблюдали среди пяти симпатрических пар сигов в дикой природе, показывает, что делать обобщения относительно ассоциации хозяин-микробиота для данного вида, используя для этого особей из дикой природы, может быть сложно и фактически неуместно.

В целом результаты перечисленных работ дают представление о сложных взаимодействиях между хозяином, микробиотой и окружающей средой у исследуемых форм сиговых, и свидетельствуют о том, что различные взаимодействия этих рыб и их микробиоты могли развиваться в постледниковое время независимо друг от друга.
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ

2.1 Филогеографичекий анализ

2.1.1. Сбор образцов

Список образцов и участки отбора проб приведены в таблице 2.

Таблица 2. Список образцов, места отбора проб и номера последовательностей гена цитохрома b

Вид		Место сбора	№ доступа в базе
	Традиционное название	материала	данных GenBank / № в
			нетворке
1	2	3	4
Coregonus lavaretus complex*			
Азия			
Бассейн оз. Байкал			
Coregonus l** baicalensis	Байкальский озерный сиг	Оз. Байкал	AJ251589 / 1
Coregonus l. pidschian	Пыжьян/озерно-речной сиг	Оз. Байкал	AJ251590 / 2
Бассейн р Лена (верхнее течение)			
Coregonus lavaretus baunti	Баунтовский сиг	Оз. Капылючи	EU003522/ 3
Muchomediarov,1948	, i i i i i i i i i i i i i i i i i i i		
Coregonus l. oronensis Kalashnikov, 1968	Оронский мелкий сиг	Оз. Орон	AJ617498 / 4
Coregonus l. pidschian	Пыжьян	Оз. Баунт	AJ617496 / 5
		Оз. Баунт	DQ185418 / 6
		Р. Ичикта	AJ617500 / 7
		Оз. Ничатка	AJ617497 / 8
		Оз. Ничатка	DQ185415 / 9
		Оз. Леприндо	AJ617499 / 10
		Оз. Орон	DQ185416 / 11 ,
		*	DQ185417 / 12

п	~	\mathbf{a}
Продолжение	таолины	1
продолжение	таозницы	_

1	2	3	4
Бассейн р Лена (нижнее и среднее течение)			
Coregonus l. pidschian	Пыжьян	Р. Лена, протока Оленек	EU003517 / 13
		Р. Оленек	EU003518 / 14
		Р. Вилюй	EU003516 / 15
Бассейн р. Енисей			
Coregonus l. pidschian	Пыжьян	Оз. Хантайское	DQ185412 / 16
		Р. Енисей	EU003519 / 17
			EU003520 / 18
		Р. Иркут	AJ617501 / 19
Coregonus l. fluviatilis Isachenko, 1925	Енисейский речной	Р. Енисей	EU003521 / 20
	горбоносый сиг		
Бассейн р. Обь			
Coregonus l. pidschian	Пыжьян	Оз. Телецкое	DQ185414 / 21
Coregonus.l. pravdinellus Dulkeit, 1949	Сиг Правдина	Оз. Телецкое	DQ185413 / 22
Европа			
Coregonus l. baeri Kessler, 1864	Волховский сиг	Оз. Ладога	DQ185410 / 23
Coregonus l. ludoga Polyakov,1874	Сиг лудога	Оз. Ладога	DQ185407 / 24
Coregonus.l. oxyrhynchus Linnaeus, 1758	"Järvisiika" по фински	Оз. Вуохиярви, Финляндия	DQ185405 / 25
Coregonus l. pidschian	"Pohjasiika" по фински	Финляндия	DQ185409 / 26
Coregonus l. pidschian	Пыжьян	Р. Печера	DQ185408 / 27
		Р. Северная Двина	DQ185406 / 28

Продолжение таблицы 2

1	2	3	4
Coregonus muksun Pallas, 1814	Муксун	Оз.Ладожское	DQ185411/ 29
		Р. Енисей	EU003524 / 30
		Р. Оленек	EU003523 / 31
Coregonus ussuriensis	Уссурийский сиг	Р. Амур	EU003525 / 32
Coregonus chadary Dybowski, 1869	Сиг хадары	Р. Онон	FJ589214 / 33
Coregonus clupeaformis	Озерный сиг	L. Ontario, Canada	DQ451313/****
	-	(Миссисипская раса***)	DQ451317/****
Coregonus nasus Pallas, 1776	Чир	Р. Печера	DQ185404 / 34
Coregonus sardinella Valenciennes,1848	Ряпушка	Р. Печера	DQ185401 / 35
	-	Р. Оленек	EU003528 / 36
Coregonus sardinella baunti Muchomediarov, 1948	Баунтовская ряпушка	Оз. Баунт	DQ185403 / 37
		(бассейн р Лена)	FJ589213 / 38
Coregonus peled Gmelin, 1789	Пелядь	Р. Печера	DQ185402 / 39
Coregonus autumnalis	Арктический омуль	Дельта р Лена	AJ617503 / 40
Coregonus migratorius	Байкальский омуль	Оз. Байкал	AJ251588 / 41
		Оз. Кулинда	AJ617502 / 42
		(бассейн оз. Байкал)	
Coregonus pollan Thompson,1835	Ирландский омуль	Оз. Лох-Ней	AJ251591 / 43
	-	(Северная Ирландия)	
Coregonus tugun Pallas,1814	Тугун	Р. Енисей	EU003529 / 44
		Р. Вилюй	EU003530 / 45
Stenodus(=Coregonus)*****leucichthys	Нельма	Р. Печера	DQ185400 / 46
Guldenstadt,1772		Р. Оленек	EU003527 / 47
Prosopium cylindraceum Pallas,1784	Валек	Р. Кутима	DQ185399
		(бассейн р Лена)	

* - для представителей Coregonus lavaretus complex дополнительно указан ареал обитания.

- ** все таксоны упомянутые ниже таксоны, имеющие в латинском названии подвидовое обозначение *l*. принадлежат к *Coregonus lavaretus* complex.
- *** дивергенция миссиссипской расы *C. clupeaformis* от других представителей комплекса *C lavaretus* (Bernatchez, 1991) составляет около 1,6 млн. лет (в соответствии с используемой в данной статье шкалой скорости накоплении нуклеотидных замен в мтДНК лососевых (см. раздел Введение)).
- **** Последовательности, полученные другими авторами (Kyle & Wilson, 2007), не использованы в нетворке, поскольку длина опубликованного фрагмента составляет меньше ½ (501 п.н. (пара нуклотидов) от полного гена цитохрома b.
- ****- *Stenodus*(=*Coregonus*) знак равенства между двумя родами подразумевает отсутствие выраженных различий рода *Stenodus* от рода *Coregonus*

2.1.2. Выделение ДНК, ПЦР и определение нуклеотидных

последовательностей

Образцы тканей хранили в 96% этаноле. ДНК выделяли при помощи метода фенол-хлороформной экстракции, как описано в разделе 2.2.2 (Sambrook et al., 1989). Полный ген цитохрома b (*cyt b*) мтДНК (1140 пн) амплифицировали с использованием праймеров L 14727, L 15162, H 15149, H 15915 (Irwin et al., 1991). D-петлю мтДНК амплифицировали при помощи внешних и внутренних праймеров. Внешние праймеры имели структуру 5'-ccactagctccccaaagta и 5'actttctagggtccatc (Bernatchez et al., 1992). Внутренние праймеры – 5'ttaatgtagtaagaaccga ccaacgattta и 5'ccagtcaagg cgtacaggtcgc (Sukhanova et al., 2002). Нуклеотидные последовательности очищенных продуктов ПЦР анализировали с помощью автоматических секвенаторов ABI 373A (Applied Biosystems) и CEQ 8800 (Beckman, Coulter).

2.1.3. Филогенетический анализ

Последовательности гена cyt b мтДНК американского сельдевидного сига (DQ451313 и DQ451317) и сиговых озера Байкал (AJ251588 - AJ251590) брали из базы ланных GenBank. Для первичного нуклеотидных анализа расчета последовательностей, генетических расстояний И построения линеаризованного дерева использовали программное обеспечение CLUSTAL W v1.7 (Thompson et al., 1994; https://www.genome.jp/tools-bin/clustalw) и MEGA v4.0 (Tamura et al., 2007; https://www.megasoftware.net/). Наиболее оптимальную модель нуклеотидных замен выбирали с использованием программы FindModel (http://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html), разработанной

на основе MODELTEST (Posada, Crandal, 1998). Была выбрана модель НКҮ (Hasegawa et al., 1985) с гамма-распределением нуклеотидных замен среди вариабельных сайтов (Uzzell, Corbin, 1971; Yang, 1993). Дерево максимального правдоподобия (ML) создавали с помощью PhyML v. 3.0 (Guidon, Gascuel, 2003; http://atgc.lirmm.fr/phyml/). В этой программе исходное дерево строили на основе генетических расстояний с алгоритмом BIONJ - расширенной версией алгоритма объединения ближайших соседей (NJ). Значения поддержки узлов ветвления определяли с помощью бутстреп анализа, используя 500 повторов. Также использовали MEGA v3.1 для построения деревьев методами максимальной экономии (MP), минимальной эволюции (ME) и NJ с бутстрэп тестом (500-1000 повторностей). Для оценки времени дивергенции в этом исследовании применяли скорость мутирования мтДНК лосося 0,5-1% за 1 млн. л. (Шедько, 1991; Smith, 1992). Для удобства использовали среднее значение 0,75%. Эти значения использовались ранее для интерпретации линеаризованного дерева NJ. построенного в соответствии с процедурой, предложенной N.Takezaki и соавторами, которая исключает таксоны, демонстрирующие аберрантные длины ветвей (Takezaki et al., 1995). Такие таксоны были выявлены путем тестирования ветвей программе LINTRE (Takezaki al..1995; длины В et ftp://ftp.nig.ac.jp/pub/Bio/lintre). Средние генетические расстояния между корнем и концом ветви рассчитывали по NJ дереву. Таксоны, для которых длина ветви отклонялась на один процент от среднего значения согласно уровню достоверного интервала, исключали из набора данных. Программу NETWORK 4.6 (Guindon, Gascuel, 2003; https://www.fluxus-engineering.com/sharenet rn.htm) использовали для построения медианных сетей (MJ). Сети строили с использованием полной последовательности («полноразмерная» сеть) и более короткого сегмента («короткая» сеть) cyt b, равных 1141 пн и 501 пн, соответственно. В «короткой» сети длина анализируемого фрагмента соответствовала длине последовательности фрагмента cyt b американского сельдевидного сига, доступной в GenBank на момент анализа (DQ451314** - DQ451317**).

2.2. Микросателлитный анализ

2.2.1. Объекты исследования и характеристика локусов

В анализе участвовали 9 выборок из 9 популяций байкальских сиговых рыб (рисунок 1, таблица 3):четыре популяции пелагиобиота омуля, которые размножаются в притоках озера, и представляют три морфо-экологические группы (МЭГ) (Смирнов и др., 2009);популяция омуля из озера Кулинда, являющегося географическим изолятом байкальского омуля периода олигоцена (Базаров, 1986; Смирнов и др., 1987а); три популяции озерного сига, нерестящегося непосредственно в озере и его мелководных участках; одна популяция озерно-речного сига, мигрирующего на нерест в крупные притоки озера. Ткани (мышцы, плавники, печень) брали у половозрелых рыб в период нереста на путях миграций. Общее число рыб - 244 особи.

Вид	N⁰	Популяция/	Число
	выборки	(место размножения)	образцов
		Баргузинская популяция/(р. Баргузин,	
	1	прибрежно-пелагическая МЭГ)	44
		Посольская популяция /(Посольский сор,	
	2	р. Большая, придонно-глубоководная МЭГ)	32
		Селенгинская популяция /	
	3	(р. Селенга, пелагическая МЭГ)	29
Баикальскии омуль		Кулиндинская популяция, географический	
	4	изолят (оз. Кулинда)	37
		Верхнеангарская популяция / (р. Верхняя	
	5	12	
		Селенгинская популяция (Селенгинское	
Байкальский озерный	6	мелководье)	39
СИГ		Чивыркуйская популяция (Чивыркуйский	
	7	залив)	10
		Маломорская популяция (Пролив Малое	
	8	Mope)	22
Байкальский озерно-		• *	
речной сиг	9	Верхнеангарская популяция	19
-		(р. Верхняя Ангара)	

Таблица 3. Места сбора проб для микросателлитного анализа и объем проанализированного материала (Сидорова и др.,2022)

Рисунок 1. Места сбора проб для микросателлитного анализа.

2.2.2. Выделение ДНК

Суммарную ДНК выделяли методом фенол-хлороформной экстракции (Sambrook et al., 1989) из фиксированных в 95% этаноле тканей (мышцы, плавники, печень).

2.2.3. ПЦР

Микросателлитные локусы амплифицировали методом ПЦР, используя праймеры, описанные в таблице 4. ПЦР проводили в 10 мкл реакционной смеси, содержащей 10 нг ДНК, один мкМ каждого праймера, 10 мМ Трис-HCl, pH 8,9 и 40 мМ KCl, 5 мМ MgCl₂ и одну е.а. Таq-полимеразы при следующих условиях: три минуты при 95°С, последующие 30 циклов (30 с при 94°С, 30 с при локусспецифичной температуре отжига (таблица 4) и 30 с при 72°С) и 10 мин при 72°С. При амплификации локуса Cam1 оптимальное количество ПЦР-продукта достигли путем увеличения количества циклов амплификации до 40. Реакцию проводили в буфере, содержащем 16 мМ (NH₄)₂SO₄, 65 мМ Трис-HCl, pH 8,8 и 0,01% Tween 20.

Потиче	Элемент	<i>t</i> _{отжига} ,	
Локус	повтора	Ľ	Последовательность праимеров
Bwf1*	(GA) ₁₆ N ₉₅ (TG) ₁₃	60	L:TACAGAGAAATACACACAACGCATCAA
			R: GAGAGGTTCCATTACTGAGCAC
22b**	(CT)15	60	L: GCTGTATGAGGATAGCATTC
			R: GCATTAGGTCGTTTTGTGT
Coc123*	(GT) ₈	60	L: GCCATGGATGCCTTCTTGAT
**			R: GGCCTTAACTTGTACACGGTCTG
Cam1**	$(GT)_3C(GT)_3^a(GT)_6N_9$	65	L: GGCTGGTGTGAACAAAAACA
	(CA) ₆ N ₁₉ (GT) ₁₁		R: CCACGTACAGGGAGGCTACA
Cam5**	(GT) ₁₆	58	L: CGGTCATGGACAAGGTTATTC
			R: GGGTTCACATTCAAGGCACT

Таблица 4. Характеристики микросателлитных локусов (Сидорова и др., 2022)

Локусы разработаны: * – для чира (Patton et al., 1997); ** – для байкальского омуля (Gaikalov et al., 2008); *** – для пелагичекой и бентической форм американского сельдевидного сига (Turgeon et al., 1998).

2.2.4 Электрофорез

Продукты ПЦР разделяли с помощью вертикального электрофореза в 6% денатурирующем полиакриламидном геле (Маниатис и др., 1984). Использовали раствор 6% полиакриламида в буфере ТВЕ: 0.05М Трис-HCl и 0,02М EDTA, pH 8,0. Визуализацию полос осуществляли методом окрашивания нитратом серебра и радиографическим методом с применением в качестве метки радиоактивного изотопа ³²P. Для определения размеров микросателлитных фрагментов использовали маркер молекулярного веса с шагом 25 пн (Promega, CША).

2.2.5 Включение радиоактивной метки (кинирование)

5'-концы праймеров метили с помощью реакции кинирования. Реакционная смесь для кинирования содержала буфер Mg–DTT, буфер Трис–HCl, 10 пМ праймеров, Т4 полинуклеотидкиназу, аденозин–5'–[γ –³²P] трифосфат и воду. Меченые праймеры затем использовали в реакции ПЦР. После электрофоретического разделения продуктов реакции ПЦР, полиакриламидный гель закладывали с рентгеновской пленкой, получая в результате радиоавтографы. В дальнейшем проводили анализ длин фрагментов по снимку.

2.2.6 Фиксация серебром

После электрофореза гель перемещали в пластиковую емкость и проводили последующую обработку, включающую несколько этапов:

1. Гель выдерживали при перемешивании 15 минут в фиксирующем растворе 0,1% СТАВ.

2. Промывали три раза 0,3% гидроксидом аммония.

3. Выдерживали при перемешивании 15-20 минут в серебряном растворе, содержащем 0,1% нитрата серебра, четыре мМ гидроксида натрия и 0,4% гидроксида аммония.

4. Проявляли изображение на свету в трех сменах проявителя (раствор параформа 0,1% и карбоната натрия 2%).

Затем проводили анализ длин фрагментов по снимку.

2.2.7. Статистическая обработка данных

При помощи программы Micro-Checker (van Oosterhout et al., 2004) данные тестировали на наличие «нулевых» аллелей, «доминирования коротких аллелей» «заикания». На основании дефицита гетерозигот по методу Brookfield И (Brookfield, 1996) с вероятностью более 95% было предсказано наличие «нулевых» аллелей для локусов Bwf1 и 22b посольской и верхнеангарской популяций омуля, а также селенгинской и маломорской популяций озерного сига; для локуса Bwf1 баргузинской популяции омуля и верхнеангарской популяции озерноречного сига; и для локусов Cocl23 и Cam5 для селенгинской популяции омуля (таблица 5). Для кулиндинской популяции омуля и чивыркуйской популяции озерного сига не было найдено ни одного «нулевого» аллеля. При коррекции входных данных согласно оценкам частот нулевых аллелей (Huang et al., 2016) резко возрастало количество отсутствующих данных (missing data), вследствие чего существенно сокращалось число анализируемых локусов. Соответственно, анализ в дальнейшем проводили без коррекции, а информацию о наличии «нулевых» аллелей использовали для интерпретации значений соответствия частот аллелей в исследованных выборках равновесию Харди-Вайнберга.

В программе Arlequin v. 3.5 (Excoffier, Lischer, 2010) по пяти локусам (Bwf1, Cocl23, Bom22b, Cam 1, Cam 5) проводили вычисление наблюдаемой (Ho) и ожидаемой (He) гетерозиготности, отклонения от равновесия Харди-Вайнберга, количества аллелей на локус, аллельного разнообразия, среднего индекса аллельных «потерь» Garza-Williams (*G-W* индекс) на локус, а также вычисляли критерий F_{ST} (Cockerham, 1973; Weir, Cockerham, 1984) как показатель меры генетической дифференциации. Значения F_{ST} и метод объединения ближайших соседей (NJ) реализованные в программах Arlequin (Excoffier, Lischer, 2010) и MEGA7.0 (Китаr et al.,2016) использовали для построения схемы, отражающей степень репродуктивной обособленности между анализируемыми популяциями. Древо гаплотипов, основанное на данных полиморфизма микросателлитных

локусов, строили, используя генетические расстояния Da (Nei et al.,1983) и метод объединения ближайших соседей NJ, реализованные в программе Population v1.2.32 (Langella O. Populations 1.2.31. 2002. http://bioinformatics.org/project/?group_id=84). При построении схем визуализацию осуществляли в программе FigTree v1.4.4 (Rambaut A. 2018. FigTree v.1.4.4. http://tree.bio.ed.ac.uk/software/figtree).

Таблица 5. Результаты обработки данных полиморфизма 5 микросателлитных локусов байкальских сиговых в программе MicroCheker (Сидорова и др., 2022)

		Вид											
						(озерный	Á	озерно-речной				
Локус			омуль				сиг		сиг				
	1	2	3	4	5	6	7	8	9				
BWF1	+	+	-	+	-	+	-	+	+				
22b	-	+	-	+	-	+	-	+	-				
Cocl23	-	-	+	-	-	-	-	-	-				
Cam1	-	-	-	-	-	-	-	-	-				
Cam5	-	-	+	-	-	-	-	-	-				

Примечание: 1-9 – номера выборок популяций: 1 – баргузинская, 2 – посольская, 3 – селенгинская, 4 – верхнеангарская, 5 – кулиндинская, 6 – селенгинская, 7 – чивыркуйская, 8 – маломорская, 9 – верхнеангарская. Знаком (+) и (-) обозначено наличие и отсутствие нулевых аллелей, соответственно.

Для выявления границ популяций и их числа использовали программу **STRUCTURE** (Pritchard et al.. 2000: STRUCTURE software https://web.stanford.edu/group/pritchardlab/structure.html). Данная программа является реализацией алгоритма Монте-Карло по схеме марковских цепей (МСМС) для байесовской статистики, при помощи которого можно определить популяционную структуру, опираясь на наиболее вероятное разделение данных на кластеры. В программе STRUCTURE при анализе микросателлитных данных предполагается допущение, что популяции находятся в равновесии Харди-Вайнберга и равновесны по сцеплению. Параметры для запуска (таблица 6) настраивали на основании статей, посвященных анализу популяций с неравными

выборками, а также подбору надежных значений, обеспечивающих достоверность полученных данных (Evanno et al., 2005; Wang, 2017)

Таблица 6. Настройки параметров для запусков программы STRUCTURE для

k	burnin	alpha
2	10000	0,5
3	10000	0,3
4	10000	0,25
5	300000	0,2
6	500000	0,16
7	500000	0,14
8	500000	0,12
9	500000	0,11
10	500000	0,1

разных k (Сидорова и др.,2022)

2.3. Сравнительный анализ транскриптомов мозга методом NGS 2.3.1. Сбор образцов

Образцы тканей половозрелого байкальского омуля посольской популяции брали у живых особей в нерестовый период на Большереченском рыбоводном заводе в октябре 2018 года. Рыбы имели типичный конечный рот и 40-41 тычинок на первой жаберной дуге. Средний размер и масса тела самцов и самок составляла $350\pm11,28$ мм, $522\pm71,5$ г и $359\pm14,3$ мм, $506\pm62,5$ г., соответственно. Все особи были первично нерестующие. Средний возраст рыб составил 9 лет для обоих полов.

Образцы тканей половозрелого байкальского озерного сига, брали у живых особей пойманных в нерестовый период жаберными сетями в декабре 2018 года в Чивыркуйском заливе оз. Байкал напротив пос. Курбулик, на расстоянии одного километра от береговой линии. Особи имели типичный полунижний рот и 26-27 тычинок на первой жаберной дуге. Средний размер и масса тела самцов и самок составляла 462±32 мм, 1117,5±442,5 г и 457±27,125 мм, 1162,5±158,75 г,

соответственно. Возраст рыб варьировал от 6 до 9 лет.

2.3.2. Выделение РНК

Суммарную РНК из 0,5-1 г ткани выделяли с помощью pearenta TRIzol (Ambion), очищали с одновременной обработкой ДНКазой I на колонках PureLink RNA Mini (Invitrogen). Качество РНК определяли на биоанализаторе BA2100 набором RNA Nano.

2.3.3. Конструирование библиотеки кДНК и секвенирование

Для создания направленных баркодированных транскриптомных библиотек использовали набор TruSeq Stranded mRNA Library Preparation Kit (Illumina) с двойными индексами UD согласно протоколу изготовителя с модификациями для получения встроек большей длины (200-500 пн). Использовали один мкг суммарной PHK, время фрагментации мPHK составило четыре минуты. После амплификации библиотек дополнительно проводили селекцию по длине на магнитных частицах AMPureXP: к разбавленной библиотеке добавляли 0,65 объема AMPureXP. Качество и молярность полученных библиотек определяли на биоанализаторе BA2100, библиотеки смешивали в эквимолярных количествах до суммарной концентрации два нМ. Секвенирование полученных библиотек выполняли на высокопроизводительном секвенаторе Illumina NextSeq550 набором NextSeq® 550 High Output v2 Kit (300 cycles) парными чтениями по 150 пн.

2.3.4. De-novo сборка транскриптома

Для подготовки чтений к последующей de novo сборке провели удаление последовательностей адаптеров с помощью программы Scythe v0.994 (Manousaki et al., 2019; https://github.com/vsbuffalo/scythe), а чтения с низким качеством отфильтровали с помощью программы Sickle v1.210 (Joshi NA, Fass JN, 2011; <u>https://github.com/najoshi/sickle</u>) по параметру q>30. De novo сборку транскриптома проводили с использованием ассемблера Trinityrnaseq v2.8.5 (Grabherr et al.,2011; https://github.com /trinityrnaseq/ trinityrnaseq/ wiki). Основные параметры сборки выставляли по умолчанию, задавая параметр минимальной длины контига 1=200. Статистику сборки рассчитывали с помощью программы

Transrate v.1.0.3 (Smith-Unna et al., 2016; http://hibberdlab.com/ transrate/index.html). Для количественной оценки полноты полученных сборок проводили их сравнение с набором высококонсервативных ортологов Actinopterygian из базы данных OrthoDB v9.1 (Zdobnov et al., 2016; https://www.orthodb.org/v9.1/index.html), c программы BUSCO v3(Waterhouse et al.,2017; https://buscoпомошью archive.ezlab.org/) рассчитали число полных (длина находится в пределах двух стандартных отклонений от средней длины данных BUSCO), дублированных чем (полных BUSCO, представленных более одной расшифровкой), фрагментированных (частично восстановленных BUSCO) и отсутствующих последовательностей (не восстановленных) в каждой из сборок.

2.3.5. Статистическое сопоставление уровня экспрессии генов

Для оценки значений уровня экспрессии транскриптов использовали программное обеспечение Salmon 1.3.0 (Patro al., 2017; et http://gensoft.pasteur.fr/docs/salmon/1.3.0/) и Bowtie2 v2.3.5.1 (Langmead, Salzberg, 2012; http://bowtie-bio.sourceforge.net/bowtie2/index.shtml). Полученные оценочные значения и нормализованные значения ТРМ группировали в матрицы с помощью Trinitymaseq программного пакета v2.8.5. (Haas al., 2013; скрипта et https://github.com/trinityrnaseq/trinityrnaseq/wiki). Статистический анализ И существенно дифференциальных идентификацию транскриптов проводили EdgeR v3.9 (McCarthy инструментом et al.. 2012; https://bioconductor.org/packages/release/bioc/html/edgeR.html) программного пакета Bioconductor.

2.3.6. Функциональный анализ транскриптомов

Для аннотации дифференциально экспрессирующихся транскриптов в качестве референсной базы данных использовали ранее аннотированные последовательности *Salmon salar* в базе данных NCBI с идентификатором UP000087266_8030. Поиск совпадений проводили с помощью BLAST (Boratyn et al., 2019; https://blast.ncbi.nlm.nih.gov/Blast.cgi) в NCBI с параметром поиска blastx для анализа совпадения нуклеотидных последовательностей с аннотированными

50

аминокислотными последовательностями. Запуск blastx осуществляли со стандартными настройками и значением e-value 1e-3. Значения параметров для бласт-поиска выбирали таким образом, чтобы сопоставить последовательности, имеющие даже небольшую степень родства. Это связано с тем, что исследуемые виды рыб филогенетически достаточно сильно удалены от референсного *S. salar*. Отбор результатов проводили по критерию наилучшего совпадения значения e-value. Для аннотирования полученные значения совпадений последовательностей транскриптов соотносили с актуальной базой GO в программе BLAST2GO (Götz et al., 2008; https://www.blast2go.com/), и выделяли соответствующие категории аннотации.

2.4. Сравнение микробиомов кишечника байкальских сига, омуля и их гибридов первого поколения методом NGS

2.4.1. Оплодотворение, инкубация и выращивание рыб

Полевые работы проводили в декабре 2010 года в Чивыркуйском заливе Байкала на нерестилищах исследуемых рыб (залив, станция мониторинга Монахово, устье р. Безымянки, р. Малый Чивуркуй и оз. Арангатуй). Рыбы были пойманы сетями с разными размерами ячеи. Для искусственного оплодотворения отбирали зрелых «текучих» рыб. У особей, отнесенных к озерному сигу, был типичный субтерминальный рот, и количество жаберных тычинок варьировало от 25 до 31 (в среднем 28). Особи, отнесенные к омулю, принадлежали к прибрежнопелагической морфо-экологической группе, имели типичный конечный рот, и количество жаберных тычинок варьировало от 40 до 49 (в среднем 44). Случайно отобрали четыре взрослые особи каждого вида. Средняя FL (длина по Смитту) и масса тела для байкальского омуля составляли 362 мм (SD±41 мм) и 495 г (SD±193 г), соответственно. Средняя FL и масса тела для озерного сига были 413 и 721 г (SD±200 г), соответственно. Искусственное (SD±34 MM) MM оплодотворение и инкубацию чистых линий омуля, озерного сига и гибридов (омуль × Лозерный сиг и наоборот) проводили в соответствии с рекомендациями (Черняев Ж.А. Черняева соавторами 1987). Искусственно с И др.,

оплодотворенную икру получали в четырех повторностях. Инкубацию икры и рыбы уникальной научной выращивание проводили В установке «Экспериментальный пресноводный аквариумный комплекс байкальских гидробионтов» (УНУ ПАК) ЛИН СО РАН и в аквариальной Байкалького музея ИНЦ СО РАН (Глызина и др., 2012). Инкубация осуществлялась в установке, подключенной к общей системе с аэрированной проточной байкальской водой (рН 7 — 7,5) регулируемой температуры (2 - 5°С), представляющей систему уменьшенных копий аппарата Вейса, обычно используемого для инкубации икры сиговых в производственных масштабах. Все партии икры инкубировали в одной и той же проточной системе. Погибшую икру регулярно удаляли. После вылупления свободноплавающих личинок переводили в 37-литровые аквариумы (50×25×30 см) с термостатическим подводным нагревателем (300 Вт) и проточной системой, 14 л/мин). Температуру поддерживали при 6°С в течение первых четырех недель. Личинок кормили ad libitum рачками Artemia salina Linnaeus, 1758 и дополняли коммерческими комбинированными кормами (Aller Futura EX, Aller Aqua Company). Через четыре недели мальков переносили в 240 л аквариумы (60×50×80 см) с проточной системой (1,4 л/мин) и полностью переводили на кормление комбикормом (Aller Futura EX, Aller Aqua Company). Температуру повышали до 12°С в течение трех недель и далее поддерживали такие условия.

2.4.2. Сбор образцов

Анализировали двухгодовалых рыб на одной и той же стадии развития в середине апреля 2013 года. Отобранные экземпляры были хорошо развиты. Это были чистые линии байкальских омуля, озерного сига и их гибриды первого поколения (\bigcirc омуль× \bigcirc озерный сиг и наоборот), всего четыре группы. Для анализа были случайно выбраны по пять индивидуумов каждой группы. Средний вес отобранных рыб: омуль 14,3±4,9 г, озерный сиг 31,6±10,2 г, гибрид \bigcirc озерный сиг× \bigcirc омуль 20,8±4,6 г и гибрид \bigcirc омуль× \bigcirc озерный сиг 26,7±10,6 г. Рыб усыпляли гвоздичным маслом и вскрывали в лабораторных условиях. Кожу рыбы промывали этанолом и брюшную поверхность живота вскрывали стерильными

хирургическими лезвиями и щипцами. Жировые отложения, окружающие желудочно-кишечный тракт мягко удаляли, фрагменты толстой кишки индивидуально помещали в стерильные пробирки и моментально замораживали при -20°C до дальнейшей обработки.

2.4.3. Выделение ДНК и высокопроизводительный анализ гена 168

рРНК

Суммарную ДНК толстого кишечника каждой рыбы из одной и той же группы экстрагировали коммерческим набором DNAsorb В в соответствии с протоколом изготовителя (AmpliSens, Москва). Область V3-V4 генов 16S рРНК амплифицировали с помощью праймерной пары 343F 5'-ctcctacggrrsgcagcag и 806R 5'-ggactacnvgggtwtctaat в сочетании с последовательностями адаптера Illumina, пэдом и линкером из двух оснований, а также штрих-кодами на праймерах (Caporaso et al., 2011). ПЦР-амплификацию проводили в 50 мкл, содержащих 0,7 U Phusion Hot Start II высокоточную полимеразу и 1×Phusion GC буфер (Thermo Fisher Scientific), 0,2 µМ прямого и обратного праймеров, 10 нг ДНК-матрицы, 2,3 мМ MgCl₂ (Sigma-Aldrich) и 0,2 мМ каждого dNTP (Life Technologies). Термические условия циклирования: начальная денатурация при 98°С в течение одной минуты, затем 30 циклов при 98°С в течение 15 с, 62°С в течение 15 с и 72°С в течение 15 с, конечная элонгация при 72°С в течение 10 мин. В общей сложности, 200 нг ампликона из каждого образца (пять индивидуумов анализируемой группы) эквимолярно объединяли вместе в одной библиотеке и очищали с помощью MinElute Gel Extraction набора (Qiagen). Всего подготовили четыре комбинированных библиотеки для секвенирования в соответствии с протоколом MiSeq (Illumina) и описанными ранее протоколами (Caporaso et al., 2011, 2012). Денатурацию образца проводили путем смешивания 4,5 мкл комбинированного ПЦР-продукта (четыре nM) и 4,5 мкл 0,2М NaOH. Денатурированную ДНК разбавляли до 14 пМ и 510 мкл смешивали с 90 мкл 14 пМ Phix-библиотеки. В общей сложности 600 мкл смеси образцов вместе с обратного праймерами для прямого И секвенирования загружали В

соответствующие лунки на реагент картридже 500-циклового PE-набора и запускали 2×250 пн парное секвенирование на секвенаторе MiSeq Illumina SB RAS Genomics Core Facility (ICBFM SB RAS, Новосибирск, Россия).

2.4.4. Биоинформатический и статистический анализы

Сборку контигов из пар сырых файлов Illumina в формате fastq и контроль их качества проводили в программе Mothur 1.31.2. (Schloss et al., 2009) https://mothur.org/wiki/mothur_v.1.32.0/). Контиги, содержащие неопределенные 330 позиции (N), И последовательности короче ΠН удаляли. Демультиплексирование, контроль качества, удаление химерных контигов, OTE кластеризацию по операционным таксономическим единицам И таксономическую классификацию проводили в программе «Quantitative insights into microbial ecology» (QIIME) (Caporaso et al., 2010 http://qiime.org/).

После всех этапов фильтрации и кластеризации, в наборе данных осталось 89246 последовательностей. Чтобы оценить статистическую достоверность представленности ОТЕ, полученных при кластеризации с дистанцией 0,03, для всех проб проводили бутстэп-анализ (повторная выборка с возвратом). Для анализа каждой пробы использовали 17978 последовательностей, то есть прочтений пробе наименьшим Q количество В с покрытием (гибрид омуль×Зозерный сиг). Анализировали 100 бутстрэп-повторностей, в каждой из которых для всех проб были получены ОТЕ с дистанцией кластеризации 0,03. На данных устанавливали наиболее основании ЭТИХ вероятное (модальное) количество ОТЕ и его 90% доверительный интервал.

Для каждой из библиотек строили кривую насыщения и рассчитывали Шеннона, Chaol и АСЕ. Для инлексы разнообразия таксономической классификации использовали репрезентативные последовательности каждой ОТЕ и классификатор RDP. Наименьшую таксономическую единицу, присвоенную репрезентативной последовательности с достоверностью 0,97 или выше, таксономический идентификатор использовали ланной OTE. Бетакак разнообразие оценивали при помощи взвешенных и невзвешенных дистанций UniFrac между библиотеками, вычисленных в QIIME. Библиотеки кластеризовали с использованием алгоритма UPGMA. Поддержку кластеризации оценивали методом складного ножа (с повторной выборкой 10000 последовательностей из каждой пробы) в 1000 повторностей.

Чтобы оценить различия между пробами, индексы UniFrac рассчитывали с помощью пакета phyloseq для языка программирования R (McMurdie, Holmes, 2013 https://joey711.github.io/phyloseq/index.html). В качестве входных данных для phyloseq использовали результаты анализа, проведённого в Mothur, а также выравненные исходные последовательности. Кластеризацию проб на основании дистанций UniFrac проводили в пакете phangorn для языка программирования R (Schliep, 2011 https://cran.r-project.org/web/packages/phangorn/index.html), также алгоритмом UPGMA. Для оценки надёжности кластеризации проводили бутстрэпанализ согласно протоколу: 1) с помощью Mothur из оригинальных данных получили 100 бутстрэп-повторностей; 2) для каждой из повторностей получили матрицы дистанций UniFrac; 3) на основании этих значений для каждой из повторностей построили UPGMA-дендрограмму; 4) на основании этих 100 дендрограмм в пакете phangorn построили консенсусную дендрограмму, на узлы которой были картированы бустрэп-поддежки. Диаграмма Венна генерировалась Perl-скриптами собственной разработки. В данной работе предварительная обработка данных, анализ ОТЕ и тестирование гипотез проводили в программе Mothur (Schloss et al., 2009).

ГЛАВА З. РЕЗУЛЬТАТЫ

3.1. Филогеографический анализ

Последовательность гена *суt b* (1140 пн) была определена для 22 таксонов. Выявлено 48 различных гаплотипов (таблица 2). Для оценки топологии дерева проанализировали 176 вариабельных сайтов, из которых 144 информативны. 7 из 8 несинонимичных нуклеотидных замен расположены В конце последовательности (начиная с 826-го сайта). Наибольшие генетические расстояния в пределах подсемейства Coregonidae выявлены между вальком и сигами Амурского бассейна (сигом-хадары и амурским сигом) – 16,1%; в пределах рода *Coregonus* в паре сибирская ряпушка и тугун – 5,9%; между истинными сигами и остальными представителями рода *Coregonus* в паре чир и тугун – 5,3% и, наконец, внутри группы «истинных» сигов в паре чир и амурский сиг – 3%.

Следующие параметры были получены в программе FindModel для построения ML дерева и оценки скорректированных генетических расстояний: $\Gamma = 0,2$, соотношение транзиции / трансверсии = 10,426, частоты нуклеотидов A, C, G и T = 0,24; 0,31; 0,17 и 0,28, соответственно. Таксоны, для которых длина ветви отклонялась от средней на один процент, согласно уровню доверительного интервала, были исключены из набора данных в линеаризованном NJ дереве (рисунок 2).

Топологии деревьев МР, МL, МЕ и NJ были идентичны для всех статистически достоверных узлов. На всех деревьях присутствуют два кластера (I и II) высокоподдержанных, «мажорных» клад (85-100%), объединенных в два комплекса (A и B) очень короткими ветвями с крайне неопределенной последовательностью ветвления (рисунок 2, 3). Высокий уровень bootstrap поддержки основных клад свидетельствует, что они представляют собой отдельные монофилетические группы. Таким образом, кластеры A и B, представляют собой две последовательные стадии звездчатой филогении или политомии, что указывает на короткий промежуток времени, в течение которого «мажорные» клады отделились от предковой формы. Как следует из

линеаризованного древа, кластеры I (объединение «мажорных» клад рода *Coregonus*) и II (объединение «мажорных» клад группы «истинных» сигов) появились примерно три и 1,5 млн лет назад, соответственно (рисунок 2).

Рисунок 2. Линеаризованное дерево NJ. Для определения времени дивергенции использована скорость мутирования мтДНК 0,5-1% на 1 млн лет (Шедько, 1991; Smith, 1992). Для построения шкалы использовали среднее значение (0,75% на один миллион лет). А и В указывают время появления кластеров I и II (Sukhanova et al., 2012)

Кластер I объединил всех членов рода *Coregonus* в пять клад: «белорыбица», «тугун», «пелядь», «арктический омуль» и «истинные сиги». «Белорыбица» и «тугун» включают только по одному мономорфному виду, а остальные три клады объединяют крупные видовые комплексы. Когда последовательности, доступные из GenBank (*Coregonus* sp.), были добавлены к нашим филогенетическим реконструкциям, клада «пелядь» включила такие полиморфные виды, как пелядь, европейская ряпушка *Coregonus albula* Linnaeus, 1758 и сибирская ряпушка, а клада «арктический омуль» состояла из таких видов, как арктический омуль, поллан, беринговоморский омуль *Coregonus laurettae* Bean, 1881 и комплекса американских ряпушек *C.artedi*. Включение этих таксонов не изменило основную топологию филогенетических схем даже в тех случаях, когда для анализа были доступны только короткие фрагменты гена *cyt b* мтДНК.

Клада «истинных сигов» целиком представлена кластером II. В него входят Евразии, многообразие все таксоны истинных сигов включая все близкородственных видов и внутривидовых форм, а также американский сельдевидный сиг, байкальский омуль и баунтовская ряпушка. В кластере II выделяются семь клад, обозначенные нами как a, b, c, d, e, f и j (рисунок 3). Клада II-а включает практически всех представителей комплекса C. lavaretus и муксуна. Важно отметить, что описанные К. Østbye с соавторами гаплотипы мтДНК С. lavaretus (Østbye et al., 2005), в нашем исследовании также принадлежат кладе IIа. Клада II-b представлена миссисипской расой американского сельдевидного сига. В нашем исследовании использовано только два образца (DQ451313 и DQ451317). Их дивергенция от остальных членов кластера II составила 1,5-2,7%. В более раннем исследовании (Bernatchez, Dobson, 1994) было показано, что дивергенции мтДНК между всеми популяциями уровень американского сельдевидного сига, обитающими на территории Северной Америки в Великих американских озерах и озерной провинции Квебек, за пределами Берингии (регион, охватывающий Юкон, Аляску и самую восточную часть Сибири), был намного меньше этих значений.

58

Рисунок 3. Филогенетические взаимосвязи между представителями сем. Соregonidae, основанные на нуклеотидных последовательностях гена цитохрома b, с использованием: а) неукорененного дерева ML и b) схематического изображения радиального дерева ML (валек отсутствует). І и II – два кластера основных клад с высокой поддержкой (85-100%). Контуры A и B очерчивают скопления узлов с недостоверным порядком ветвления в кластерах I и II; черные круги – узлы с высокой (более 85%) бутстреп поддержкой, белые круги – с низкой (менее 50%); звездочками отмечены таксоны, исключенные из набора данных в линеаризованном дереве NJ (рисунок 4) из-за отклонения длины ветви от среднего более, чем на 1%, согласно уровню достоверности (Sukhanova et al., 2012)

Таким образом, две последовательности американского сельдевидного сига,

использованные нами в филогенетической реконструкции, представляют на нашем древе всего американского сельдевидного сига, обитающего на территории Северной Америки за пределами Берингии. Клада II-с представлена несколькими таксонами из бассейна Енисея: озерно-речным сигом из оз. Байкал и р. Иркут, муксуном и горбоносым сигом из реки Енисей. Клада II-d включала только баунтовскую ряпушку. Чир – единственный таксон в кладе II-е. Сиговые Амурского бассейна (амурский сиг и сиг-хадары), объединены в кладе II-f. И, наконец, байкальские сиг и омуль, включая популяцию из оз. Кулинда, были единственными членами клады II-j.

Общеизвестно, что построение дихотомических схем является очень сложной задачей, особенно если большое количество последовательностей (гаплотипов) разделено короткими генетическими расстояниями. В этих ситуациях нетворки (сети) лучше отражают отношения между гаплотипами, поскольку гаплотипы могут быть расположены не только на концах ветвей, но также и в узлах сети. Более того, альтернативные эволюционные пути могут быть представлены в виде циклов. Медианная сеть (рисунок 4), построенная с использованием полного гена cyt b («полноразмерная» сеть) соответствует кластеризации гаплотипов в дереве ML (рисунок 2, 3). Количество мутаций в основных ветвях сети коррелирует с длиной соответствующих ветвей в деревьях. Незначительные отличия связаны с особенностями сетевых конструкций. Примечательно, что гаплотип озерно-речного сига из Хантайского озера (№16 в сети) является предковым для всех членов клады «а» кластера II (II-а). Другие гаплотипы клады II-а упорядочивались следующим образом: группа гаплотипов сигов из бассейнов рек Лена и Енисей (№№3-8, 10, 12-15, 17) последовали за гаплотипом №16; представители западных территорий (бассейны рек Обь (№№21, 22), Печера (№27) и Северная Двина (№28), а также Ладожского озера (№№23, 24) и водоемов Финляндии (№№25, 26) образовали производную группу, в которой ладожский сиг (№24) и обитатели финских водоемов (№№25 и 26) были предковыми гаплотипами.

В этой же группе гаплотипов оказалось несколько сибирских гаплотипов из оз. Ничатка (№9) и оз. Орон (№11), а также из нижнего течения р. Енисей (№18) и р. Оленек (№ 31). Сиговые оз. Байкал стали членами двух дивергентных клад «с» и «ј» кластера II. Гаплотипы клады II-с были расположены следующим образом: сначала озерно-речной сиг из р. Иркут (№19) и муксун из р. Енисей (№30), потом енисейский речной горбоносый сиг (№20) и на вершине ветви эволюционно самый молодой байкальский озерно-речной сиг (№2), только одна-две мутации отделяют его от других членов клады. Близость байкальского озерно-речного сига и енисейских обитателей находится в соответствии с выводами других авторов, которые обнаружили гаплотипы байкальского озерно-речного сига в образцах енисейского речного RFLP мтДНКсига при помощи анализа амплифицированных фрагментов (Gordon et al., 2005, Baldina et al., 2007).

Идентичность байкальского озерно-речного сига и некоторых сигов р. Енисей в их исследовании объясняется более низким разрешением метода RFLP по сравнению с секвенированием. Позднее, секвенирование гена ND1 мтДНК енисейского речного сига, описанного как сиг Исаченко (C.fluviatilis), еще раз подтвердило его видовую обособленность и сходство с байкальским озерноречным сигом (Бочкарев и др., 2017). Далее по сети (рисунок 4) байкальский омуль (№41) и озерный сиг (№1) сформировали кладу II-j. Омулевый гаплотип №42 из оз. Кулинда (бассейн оз. Байкал) был производным от гаплотипа озерного сига (№1). В отличие от дерева ML, сеть более отчетливо показала, что клады II-f (сиги Амурского бассейна, №№32-33) и II-ј (байкальские сиги, №№1, 41, 42) разошлись почти одновременно с другими кладами кластера. В сети, как и в дереве ML, гаплотипы клады II-ј были отделены от центра дивергенции клад кластера II (точка В в ML дереве) меньшим количеством мутационных шагов. «полноразмерной» Клада II-b отсутствовала в сети, так как короткая последовательность 501 В ΠН американского сельдевидного сига не использовалась в этом анализе.

61

Рисунок 4. «Полноразмерная» медианная сеть гаплотипов, построенная в программе NETWORK на основе полной нуклеотидной последовательности гена *сут b* сиговых рыб. Диаметр кружков пропорционален числу индивидуумов, Выделенные области представляющих гаплотипы. a. c-i соответствуют обозначениям основных клад кластера II «истинных» сигов на ML дереве (рисунок 2). Числа между слэшами указывают число замен. Номера гаплотипов совпадают с порядковыми номерами таксонов, представленных в тексте диссертации в таблице 2. Обайкальские озерный сиг и омуль (гаплотипы №№ 1, 41, 42); 9– байкальский озерно- речной сиг (гаплотип №2)

Чтобы изучить положение миссисипской расы американского сельдевидного сига по отношению к истинным сигам и показать, как включение этого таксона

повлияет на группировку гаплотипов в кластере II, мы построили «короткую» сеть с использованием фрагмента *суt b* длиной 501 пн (рисунок 5).

Рисунок 5. МЈ «короткая» сеть гаплотипов, построенная на основе короткого фрагмента гена *суt b* (501 пн) (Sukhanova et al., 2012). Диаметр кругов пропорционален числу индивидуумов, представляющих соответствующий гаплотип. а-ј соответствуют основным кладам с высокой поддержкой кластера II «истинных» сигов на дереве ML; номера гаплотипов совпадают с номерами последовательностей в таблице 2

Различия между «короткой» и «полноразмерной» сетями объясняются более короткой длиной фрагмента. Сокращение числа информативных сайтов вызвало слияние А и В комплексов и, следовательно, интеграцию основных клад обоих

кластеров (I и II) рода *Coregonus* в один кластер. В результате гаплотипы байкальских озерного сига и омуля оказались центральными и предковыми по отношению ко всем таксонам рода *Coregonus*, а гаплотип сига из Хантайсого озера (№16) оказался предковым по отношению к членам клад II-а, II-b и II-с.

Эти результаты объясняют причины прошлой неопределенности относительно сродства сиговых оз. Байкал с комплексом *C. lavaretus* (Sukhanova et al., 2004; Politov et al., 2004), предковую связь между байкальским омулем и комплексом *C. autumnalis* и его возможное корневое положение в роде *Coregonus* (Politov et al., 2004). Несмотря на различия, существовали и закономерности интеграции гаплотипов в клады. Что касается миссисипской расы американского сельдевидного сига, положение его гаплотипов в «короткой» сети и попарные значения расхождения с гаплотипами остальных клад кластера II (1,5-2,7%) показывают, что популяции американского сельдевидного сига за пределами Берингии принадлежат отдельной кладе II- d в кластере «истинных» сигов.

3.2. Микросателлитный анализ

3.2.1. Генетическое разнообразие

В результате проведенного анализа наблюдали высокий полиморфизм изученных популяций байкальских сиговых по исследованным локусам (таблица 7). Наименьшее число выявленных аллелей на локус в анализируемой выборке – два (22b и Cocl23), а наибольшее -26 (рисунок 6). В целом по всем выборкам среднее число аллелей на локус – восемь аллелей. Популяции омуля по числу выявленных аллелей и уровню гетерозиготности были более полиморфными (среднее число аллелей – 10,9; средний уровень H_E=0,77; H_O=0,70), чем популяции озерного сига (среднее число аллелей-6,4; средний уровень H_E=0,6404; H₀=0,60). Еще более низкий уровень полиморфизма продемонстрировали малочисленные популяции – географический изолят омуля – омуль оз. Кулинда аллелей – 5,6; средний уровень H_E=0,58; H_O=0,60) и (среднее число верхнеангарская популяция озерно-речного сига (среднее число аллелей – 4,4; средний уровень H_E=0,51; H₀=0,47). G-W индекс для всех исследованных выборок оказался существенно меньше 0,70, что предполагает прохождение популяций через бутылочное горлышко (Garza, Williamson, 2001).

Таблица 7. Оценки показателей попарной генетической дифференциации F_{ST}

	Вид											
N⁰			Омуль		0	зерный с	Озерно- речной сиг					
	1	2	3	4	5	6	7	8	9			
1												
2	0,030											
3	0,042	0,0362										
4	0,074	0,100	0,067									
5	0,202	0,194	0,204	0,135								
6	0,062	0,087	0,092	0,093	0,208							
7	0,097	0,104	0,118	0,127	0,218	0,027						
8	0,071	0,099	0,081	0,075	0,202	0,012	0,038					
9	0,183	0,214	0,149	0,190	0,306	0,217	0,204	0,188				

популяций байкальских сиговых (Сидорова и др.,2022)

Примечание: 1-9 – номера выборок популяций: 1 – баргузинская, 2 – посольская, 3 – селенгинская, 4 – верхнеангарская, 5 – кулиндинская, 6 – селенгинская, 7 – чивыркуйская, 8 – маломорская, 9 – верхнеангарская. Жирным шрифтом выделены статистически достоверные различия при P < 0,05.

Рисунок 6. Количество аллелей по 5 микросателлитным локусам. 1 – локус Bwf1, 2 – Bom22b, 3 – Cocl23, 4 – Cam1, 5 – Cam5 (Сидорова и др., 2022)

3.2.2. Генетическая дифференциация и популяционная структура

Согласно полученным значениям F_{ST} (таблица 7), все изучаемые выборки достоверно отличались друг от друга, исключая селенгинского озерного сига, который не показал достоверных различий от двух других выборок озерных сигов (Чивыркуйского и Маломорского). На основе интерпретации значений F_{ST} , предложенной Райтом (Wright, 1978), высокая степень дифференциации выявлена между кулиндинской популяцией омуля и верхнеангарской популяцией озерно-

66

речного сига (F_{ST}=0,306), при этом они умеренно дифференцированы от остальных четырех популяций омуля и трех популяций озерных сигов $(F_{ST}=0,135-0,217)$. Попарные значения F_{ST} между популяциями омуля (исключая омуля оз. Кулинда) и популяциями озерного сига относятся к значениям ниже умеренных, но выше незначительных показателей (F_{ST}= 0,062-0,127); разброс значений *F*_{ST} между популяциями омуля (исключая омуля оз. Кулинда) смещен в сторону незначительных показателей (F_{ST}=0,03-0,1); различия между озерными сигами или не достоверны, или незначительны (F_{ST}=0,012-0,038). Общая картина дифференциации между анализируемыми выборками наглядно представлена на древе, построенном на основе полученных попарных значений $F_{\rm ST}$ методом ближайших соседей (NJ) в программе MEGA7.0 (рисунок 7Б). На схеме, построенной методом ближайших соседей (NJ) на основе генетических расстояний между гаплотипами Da, вычисленных в программе Population (рисунок 7A) только гаплотипы популяций кулиндинского омуля И верхнеангарского озерно-речного сига, которые демонстрируют очень большую дифференциацию по значениям F_{ST} , образуют хорошо идентифицируемые отдельные группы.

Рисунок 7. Деревья, построенные по данным полиморфизма пяти микросателлитных локусов: А – для особей, методом ближайших соседей (NJ - neighbor joining) на основе генетических расстояний между гаплотипами Da (Kumar et al., 2016), реализованных в программе Population v.1.2.32; Б – для популяций, методом NJ на основе попарных значений Fst (Excoffier, Lischer, 2010; Cockerham, 1973), реализованных в программе Arlequin и MEGA7.0 (Сидорова и др., 2022)

Результаты обработки данных в STRUCTURE для разного количества кластеров приведены на рисунке 8, каждая вертикальная линия представляет долю участия обозначенных цветом кластеров в многолокусном генотипе особи.

Рисунок 8. Результаты обработки данных в STRUCTURE сиговых Байкала. К = 2 (а), 3 (б), 4 (в), 5 (г), 6 (д), 7 (е), 8 (ж), 9 (з), 10 (и) кластеров соответственно. Цифры отражают принадлежность особей к популяциям на основе мест вылова (омуль: 1 – баргузинская, 2 -посольская, 3 – селенгинская, 4 – верхнеангарская, 5 – кулиндинская; озерный сиг: 6 – селенгинская, 7 – чивыркуйская, 8 – маломорская; 9 – верхнеангарская популяция озерно-речного сига) (Сидорова и др., 2022)

В программе STRUCTURE истинное количество кластеров определяется, применяя метод, предложенный Эванно в 2005 году (Evanno et al., 2005) и реализованный сервисом STRUCTURE HARVESTER (Earl, Holdt, 2012). На рисунке 9 изображен результат применения этой программы. Наибольшее значение ΔK указывает на разделение анализируемых выборок на 6 кластеров. Вместе с тем значения ΔK для случаев с возможным разделением на 7 и 8 кластеров и их дисперсия имеют близкие вероятные значения. Полученный результат хорошо согласуется со схемами, построенными на основе генетических расстояний между гаплотипами Da (рисунок 7 A) и попарных значений генетической дифференциации F_{ST} между выборками (Таблица 7, рисунок 7Б). Так, при разделении в программе STRUCTURE исследуемых выборок на кластеры (рисунок 9) в отчетливые кластеры обособились только представители верхнеангарской популяции озерно-речного сига (пыжьяна) и кулиндинской популяции омуля. На схеме, построенной по генетическим расстояниям между гаплотипами Da только гаплотипы кулиндинской популяции омуля И верхнеангарской популяции озерно-речного сига, которые демонстрируют очень большую дифференциацию по значениям F_{ST}, очевидно образуют отдельные группы (рисунок 7 А). При этом 8 из 9 анализируемых выборок показали статистически достоверные попарные различия по $F_{\rm ST}$.

Рисунок 9. График среднего правдоподобия L(K) и дисперсии значений K. Значения функции ΔK (ось ординат) от возможного числа кластеров (ось абсцисс). Значение, отложенное по оси X, указывает на истинное количество кластеров (в данном случае 6). Высота пика отражает выраженность популяционной структуры (Сидорова и др.,2022)

3.3. Сравнительный анализ транскриптомов мозга методом NGS

Результаты сборки транскриптома тканей мозга байкальских озерного сига иомуляпредставленывтаблице8.

Вид	Кол-во	Наи-	Наи-	Кол-во	Сред-	Кол-	Кол-	Кол-	Кол-	%	N90	N70	N50	N30	N10	GC
	конти-	мень-	боль-	осно-	няя	во	во	во	во	кон-						
	гов	ший	ший	ваний	длина	кон-	кон-	кон-	кон-	ти-						
		кон-	кон-		Кон-	ти-	ти-	ти-	ти-	гов-						
		ТИГ	ТИГ		тига	гов	гов	гов	гов	c						
						менее	свыше	свыше	с	OPC						
						200	1000	10000	OPC							
						ПН	ПН	ПН								
сиг	167255	287	1770	186125180	1112,82	0	60802	24	51369	44	459	993	1708	2601	4132	0,457
омуль	197112	283	1603	235906987	1196,8	0	76110	38	66654	47,36	479	1116	1919	2879	4582	0,464

Таблица 8. Статистические характеристики сборок
При анализе сборок транскриптомов общее количество контигов (транскриптов) составило 167255 и 197112 для байкальских озерного сига и омуля, соответственно (таблица 8, 9).

Таблица 9. Характеристика собранных контигов транскриптомов байкальских

IC	Количество контигов		Доля контигов, %	
Контиги	сиг	омуль	СИГ	омуль
Полные	2807	3424	61,2	74,7
Полные и неповторимые	1086	1048	23,7	22,9
Полные и повторяющиеся	1721	2376	37,5	51,8
Фрагментированные	731	516	15,9	11,3
Отсутствующие	1046	644	22,9	14,0
Общее число найденных	4584	4584		

озерного сига и омуля

Затем извлекли выраженные транскрипты, которые по крайней мере в четыре раза дифференциально выражены при значении ≤0,001 в парном сравнении выборки. Количество траснкриптов с достоверно различающимся уровнем экспрессии составило 302 и 303, соответственно (Приложение II). В итоге из транскриптов озерного сига и омуля 0,18 и 0,15%, соответственно, различались по уровню экспрессии. Для 99,82 и 99,85% РНК-продуктов, соответственно, различия по уровню экспрессии можно считать незначительными или недостоверными. У озерного сига выше экспрессируются гены, связанные с ростом и развитием, слухом, зрением, с предполагаемой способностью к обучению и памятью, а у омуля – гены, связанные с иммунитетом, внутриклеточным транспортом, регуляцией и репродукцией (приложение III).

3.4. Сравнение микробиомов кишечника байкальских омуля, озерного сига и их гибридов первого поколения методом NGS

В общей сложности при метагеномном секвенировании четырёх библиотек было получено 89246 валидных прочтений и 624 ОТЕ. Эти прочтения/ОТЕ были отнесены к 13 различным классам бактерий (таблица 10).

Таблица 10. Бактериальные филы, обнаруженные в четырех библиотеках микробиома кишечника сига, омуля и их гибридов при метагеномном

	Последователь	ности	OTUs		
Название филы	Общее кол-во	Доля, %	Общее кол- во	Доля, %	
1	2	3	4	5	
Proteobacteria	74174	83,11	300	48,08	
Bacteroidetes	8953	10,03	42	6,73	
Firmicutes	3427	3,84	120	19,23	
Actinobacteria	1200	1,34	72	11,54	
Spirochaetes	1095	1,22	6	0,96	
Verrucomicrobia	83	0,09	7	1,12	
Candidatus Saccharibacteria	53	0,06	11	1,76	
Fusobacteria	47	0,05	5	0,80	
Chloroflexi	23	0,03	6	0,96	
Synergistetes	6	0,01	1	0,16	
Acidobacteria	5	<0,01	3	0,48	
Deinococcus- Thermus	5	<0,01	1	0,16	
Chlamydiae	2	<0,01	1	0,16	
unclassified	173	0,19	49	7,85	

секвенировании

Полученные библиотеки включают от 17987 до 36037 последовательностей и от 168 до 311 ОТЕ (таблица 11).

Вид/гибрид Число Ч посл-тей С	Число	Число	Наиболее	90% довери-	Индексы разнообразия		
	OTUs	число OTUs	тельный интервал	ACE	Chaol	Shan- non	
Байкальский омуль	28426	311	606	586-625	569	496	1,62
Озерный сиг	36037	168	153	143-167	976	593	1,68
♀озерный сиг × ♂байкальский омуль	23094	196	350	338-368	484	382	1,01
♀байкальский омуль × ♂озерный сиг	17978	197	459	442-478	397	299	1,42

Таблица 11. Альфа-разнообразие микробиомов кишечника байкальских омуля,

озерного сига и их гибридов F1

Индекс разнообразия АСЕ варьировал от 397 до 976, индекс Chao1 имел значения от 299 до 593. Индекс разнообразия Шеннона варьировал от 1,01 до 1,68, причём, наименьшее значение было получено для микробиоты кишечника гибрида $\stackrel{\circ}{\to}$ озерный сиг× $\stackrel{\circ}{\to}$ омуль, а наибольшее – для микробиоты озерного сига.

Угол наклона кривых насыщения для библиотек омуля и гибридов выше, чем для озерного сига, что указывает на большее разнообразие микробиоты в этих трёх группах. Кроме того, кривая насыщения для гибрида F1 ♀ омуль×♂озерный сиг ближе к омулю, а для гибрида F1 ♀озерный сиг×♂ омуль – к озерному сигу (рисунок 11).

Рисунок 10. Кривые насыщения бактериальных последовательностей 16S рРНК для различных библиотек (Belkova et al., 2017). ОТU идентифицированы с использованием 97% порога обрезания

По результатам анализа альфа-разнообразия ОТЕ наибольшее их количество представлено в микробиоте кишечника омуля, а наименьшее – в микробиоте кишечника озерного сига. Оценка наиболее вероятного количества ОТЕ подтверждает эти результаты, указывая на близость микробиоты омуля к гибриду Q омуль× ∂ озерный сиг, после которого следует гибрид Qозерный сиг× ∂ омуль, а микробиота сига наиболее удалена от остальных (рисунок 10). Аналогичные результаты получены при кластеризации проб с использованием взвешенной и невзвешенной метрик дистанции UniFrac: бутстрэп-анализ указывает на высокую достоверность кластеризации омуля с гибридом Q омуль× ∂ озерный сиг (рисунок 11).

Рисунок 11. Дендрограмма UPGMA, основанная на кластеризации библиотек кишечных микробиомов в соответствии с составом микробиальных сообществ (Belkova et al., 2017). Группы определены с помощью взвешенных и невзвешенных расстояний UniFrac. ОМ – омуль, WH – озерный сиг, гибриды F1:WHxOM – ♀озерный сиг×♂ омуль и OmxWH – ♀ омуль×♂озерный сиг

Анализ видов, упорядоченных по встречаемости, показывает, что 34 ОТЕ, включая доминирующие, представлены во всех библиотеках (Рисунок 12). Количество видов в группе омуль (OM) – 311, в группе озерный сиг (WH) – 168, в группе \bigcirc омульх \bigcirc озерный сиг (\bigcirc Omx \bigcirc WH) – 196, в группе \bigcirc озерный сигх \bigcirc омуль (\bigcirc Whx \bigcirc OM) – 197. Число видов, разделенных между группами От и WH – 57; От и \bigcirc Omx \bigcirc WH – 83; От и \bigcirc Whx \bigcirc OM – 77; Wh и \bigcirc Omx \bigcirc WH – 54; Wh и \bigcirc Whx \bigcirc OM – 52; \bigcirc Omx \bigcirc WH и \bigcirc Whx \bigcirc OM – 69; OM, WH и \bigcirc Omx \bigcirc WH – 43; OM, WH и \bigcirc Whx \bigcirc OM – 41; OM, \bigcirc Omx \bigcirc WH и \bigcirc Whx \bigcirc OM – 53; WH, \bigcirc Omx \bigcirc WH и \bigcirc Whx \bigcirc OM – 41. Общее изобилие всех групп – 624.

62 и 42 ОТЕ были представлены в двух и трёх библиотеках соответственно, причём больше всего общих ОТЕ (17, 19 и 21) между библиотеками омуля и гибридов F1, а наименьшее (4, 7 и 9) – между библиотеками озерного сига и гибридов. 486 ОТЕ представлены только в одной из четырёх библиотек, из них 197 в библиотеке омуля, 96 в библиотеке озерного сига, 93 в библиотеке гибрида ♀озерный сиг×♂ омуль и 100 в библиотеке гибрида ♀ омуль×♂ озерный сиг.

Рисунок 12. Диаграмма Венна среднего числа общих и уникальных оперативных таксономических единиц бактерий библиотек кишечника омуля (OM), сига (WH), F1 гибридов ♀сиг×♂омуль (WH × OM) и ♀омуль×♂сиг (OM × WH) (Belkova et al., 2017)

Таксономический состав микробиоты толстого кишечника всех четырёх групп рыб на уровне класса отличался мало. Присутствовало от 7 до 9 классов, причём преобладали Proteobacteria, Bacteroidetes, Firmicutes и Actinobacteria, к 89,8; 14,2; 5.2 4,2% которым было отнесено И последовательностей, соответственно. Микробиоты различались только составом минорных бактериальных таксонов со встречаемостью 0,01-2,4%. Минорные бактерии озерного сига и гибридов имели относительно небольшое разнообразие, и общими для них были только бактерии класса Spirochaetes. Deinococcus-Thermus, Fusobacteria и Chlamydiae были обнаружены либо только в озерном сиге, либо в гибридах. Более значительные различия только В составе минорных бактериальных таксонов были обнаружены между омулем и гибридами. Verrucomicrobia, Chloroflexi и Synergistetes были обнаружены только В микробиоте кишечника байкальского омуля, в то время как Acidobacteria и Candidatus Saccharibacteria встречались и у омуля, и у гибридов. Наиболее

многочисленной ОТЕ была *Serratia*, встречаемость которой в различных библиотеках варьировала в пределах 60,96-79,48% (рисунок 13).

Основные после Serratia ОТЕ микробиоты толстого кишечника омуля включали последовательности, близкие к Porphyromonas (6,02%), Achromobacter (5,1%), *Rhodobacter* (2,77%), а также к Rhodobacteraceae (1,06%, не определены до рода). В библиотеке микробиоты толстого кишечника озерного сига преобладали последовательности, близкие к Chitinophagaceae (6,73%, не определены до рода), Achromobacter (6,25%), Sediminibacterium (5,68%), Brevinema (2,22%), Prevotella (1,62%), Caulobacter (1,31%) и Sphyngomonas (1,24%). В микробиоте толстого сиг×∂ гибрида ♀озерный омуль кишечника чаще всего встречались последовательности, близкие к Achromobacter (4,77%) и Porphyromonas (4,07%). В микробиоте толстого кишечника гибрида ♀ омуль×∂озерный сиг доминировали последовательности, близкие к Pseudomonas (7,49%), Achromobacter (3,27%), Porphyromonas (2,64%), Brevinema (1,11%) и Proteobacteria (1,14%, не определены до рода). Доля десяти крупнейших ОТЕ варьировала от 85,79% (омуль) до 92,46% (гибрид ♀озерный сиг×♂ омуль). Остальную долю микробного сообщества составляли неклассифицированные микроорганизмы.

Рисунок 13. Наиболее детализированные таксономические уровни, присвоенные десяти наиболее распространенным бактериальным филотипам

ГЛАВА 4. ОБСУЖДЕНИЕ

4.1. Филогеографический анализ

Общепризнано, что эволюция сиговых, а также многих других пресноводных рыб, обитающих в водных средах умеренных и северных широт северного полушария, тесно связана с геолого-климатической историей региона. Эту связь подтверждают подробные филогенетические исследования двух полиморфных групп рода *Coregonus – «C. lavaretus* complex» и *«C. artedi* complex» (Bernatchez, Dodson, 1994; Turgeon, Bernatchez, 2003; Østbye et al., 2005). Генетические различия, выявленные при анализе мтДНК и микросателлитов, в основном связаны с историей распространения сиговых и часто не соответствуют принятой классификации (обычно морфологии). таксономической основанной на Мозаичная природа повторяющихся сходных экологических форм в разных местах недавно колонизированной среды обитания, характерная для сигов, является результатом послеледниковых событий. Такие события часто вызваны сложной комбинацией так называемой сетчатой эволюции (в результате гибридизации, которая распространена среди сигов (Svardson, 1970) и недавней параллельной эволюцией (появление подобных фенотипов в водных объектах, которые не связаны друг с другом). Локальная экофенетическая дифференциация, формы с количеством жаберных например, различным тычинок (таксономический признак) и разной глубиной обитания, часто сопровождается дифференциацией, генетической вызванной изменением репродуктивного среди форм. Таким образом, дивергентные морфологические поведения характеристики играют адаптивную роль в занятии экологических ниш в существующих водоемах. Наше филогенетическое исследование, основанное на полных нуклеотидных последовательностях гена *суt b* мтДНК, подтверждает эту гипотезу. Особый интерес представляют различия между филогенетическими деревьями (рисунок 2, 3) и общепринятой таксономической классификацией членов клад кластера II. Наиболее яркие выводы, которые можно сделать из полученных данных: полифилия *C. pidschian* и *C. muksun*, небольшие генетические различия между байкальскими омулем и озерным сигом, размещение байкальского омуля и баунтовскойряпушки в кластере «истинных» сигов (кластер II), несмотря на типичный пелагический фенотип.

4.1.1. Два важных события в эволюции рода Coregonus

Проведенные исследования подтверждают гипотезу, которой придерживаются многие авторы. Она предполагает, что Восточная Сибирь является центром видообразования для рода Coregonus (Дрягин и др., 1969; 1970; Шапошникова, 1976; Решетников, 1980; Карасев, Himberg, 1987). Проведенные исследования также позволяют считать верными выводы относительно выживания более старых форм комплекса C. lavaretus на юге Восточной Сибири, региона, который не подвергался оледенению (Bernatchez, Dodson, 1994). Осадочная летопись биогенного кремнезема оз. Байкал говорит о том, что на этот регион Центральной Азии влияли два крупных эпизода резкого похолодания 2,82-2,48 и 1,75-1,45 млн. лет назад. (Williams et al., 1997). Тектонические процессы рельефообразования на юге Восточной Сибири (Логачев и др., 1974; Карабанов, 1999, 2001; Мац и др., 2001) и события, вызванные глобальными плейстоценовыми оледенениями, могли привести к одновременному разделению предковых форм рода Coregonus по рефугиумам дважды. Наиболее вероятные местоположения рефугиумов относятся к Саяно-Алтайской горной стране и Байкальской рифтовой зоне. По нашим данным, отделение предков наиболее древних форм рода Coregonus и их рапространение из указанных выше рефугиумов в Евразию и Северную Америку произошли не менее 3 млн. лет назад, после периода межледниковья (кластер I, рисунок 2, 3). Эти древние сиговые были предками белорыбиц, тугуна, пеляди, арктического омуля и «истинных» сигов. Клады «белорыбица» и «тугун» включают в себя только по одному мономорфному виду, а последние три клады объединили крупные видовые комплексы.

Второе важное событие в эволюции сиговых произошло около 1,5 млн лет

82

назад и было связано с появлением в линии «истинных» сигов предков монофолетичных клад, в том числе, предков сиговых оз. Байкал (кластер II, рисунок 2, 3). Вероятно, депрессия Саяно-Алтайских гор и Байкальской рифтовой зоны сыграла определенную роль в создании рефугиумов на этом этапе. Кластер II объединяет все таксоны евразийских «истинных» сигов, американского сельдевидного сига, а также байкальских омуля, озерного сига и баунтовского сига (рисунок 2, 3). Состав таксонов, географическое распределение и генетические расстояния свидетельствуют о том, что клады a-b кластера II принадлежат к той фракции «истинных» сигов, которая была детально описана в филогеографических исследованиях двух видовых комплексов: американского сельдевидного сига и обыкновенного сига (Bernatchez, Dodson 1994; Østbye et al., 2005). циркумполярное По-видимому, распределение американских И евразийских сигов представлено, в основном, этими двумя (II a-b) линиями. К сожалению, Берингия (область, охватывающая Юкон, Аляску и самую восточную часть Сибири) не была представлена в данных исследованиях. Остальные клады кластера II (c, d, f и j) занимали более ограниченные участки, имели юговосточный ареал распространения и географически относились к регионам, которые могли быть рефугиумами для выживания «истинных» сигов. В кластере II только чир (II-е) имел широкое географическое распространение, но это типичный мономорфный вид. Базальное положение сига из Хантайского озера (гаплотип №16) в кладе II-а в дереве ML и в «полноразмерной» сети (рисунок 2, 3, 4), и в кладах II b-с в «короткой» сети (рисунок 5) соответствует физическим и географическим характеристикам региона (плато Путорана), где расположено оз. Хантайское. Путорана – обширное базальтовое плато, расположенное на северозападе Среднесибирского плоскогорья с комплексом высоких горных массивов, имеющих плоские вершины, разделенные глубокими и широкими ступенчатыми каньонами, занятыми реками и озерами. Значительное количество озер в этом регионе являются самыми глубокими и длинными в Сибири после Байкала и Телецкого озера (Лама, Кета, Глубокое, Хантайское, Аян и другие). Для этих озер,

несмотря на широту, характерно высокое биоразнообразие. Плато Путорана не время последнего глобального подвергалось оледенению BO максимума похолодания (Barr, Clark, 2011) и может представлять собой рефугиум, в котором выжили истинные сиги. Интересно, что все европейские гаплотипы группируются в кладе II-а и являются производными от сибирских гаплотипов, но только четыре сибирских гаплотипа являются производными от европейских (рисунок 4). Положение этих гаплотипов в «европейской» части сети поддерживает их западно-восточное происхождение, т. е. возможность обратной миграции из европейской части в Сибирь. Более того, эти результаты согласуются с характером кластеризации гаплотипов В вышеупомянутом подробном филогенетическом исследовании обыкновенного сига (Østbye et al., 2005). К. Østbye с соавторами также обнаружили, что гаплотипы с русского Севера, отобранные в реках, протекающих по территории плато Путорана, были предковыми для всего европейского комплекса сигов.

4.1.2. Полифилия муксуна и озерно-речного сига

Морфологические различия между *C. pidschian* и *C. muksun* признаны таксономически значимыми, и эти формы традиционно считаются отдельными видами. В то же время, они симпатричны на большей части географического ареала муксуна (Балдина и др., 2008). Аллозимный анализ (Ермоленко, 1991а; Politov et al., 2000, 2002) не выявил существенной генетической разницы между ними. Более того, анализ мтДНК (Балдина и др., 2008) показывает, что гаплотипы муксуна из различных сибирских бассейнов образуют общую группу с гаплотипами пыжьяна Северного Ледовитого океана, причем обе формы имеют общие гаплотипы. Однако важно отметить, что в этом анализе отсутствует бассейн р. Енисей. Проведенные исследования указывают на параллельное и независимое появление обоих фенотипических вариантов, которые представлены в кладах II-а и II-с (рисунок 2, 3, 4, 5). Озерно-речной сиг оз. Байкал и р. Иркут (приток р. Ангары) и муксун р. Енисей образуют кладу II-с. *C. pidschian* и *C. muksun* в кладе II-а объединяются с большинством представителей комплекса

84

С. lavaretus. Два гаплотипа муксуна (№29 и 31) являются производными от гаплотипов С. lavaretus, но не монофилетическими (рисунок 4). Полифилия С. pidschian и С. muksun – еще один яркий пример параллельной эволюции в роде Coregonus. Она полностью опровергает идею об их недавнем происхождении от общего предка (Ермоленко, 1991b). Гипотеза многократного (парафилетичного) возникновения муксуна от пыжьяноподобного предка в результате гибридизации с представителями комплекса сибирская ряпушка-пелядь (Балдина и др., 2008) маловероятна, и требует дополнительных исследований.

4.1.3. Происхождение сиговых озера Байкал

Все байкальские сиговые принадлежат к монофилетической группе «истинных» сигов, объединяющей несколько расходящихся клад с одинаковым временем происхождения (кластер II, рисунок 2, 3, 4, 5). Однако в пределах этой группы байкальский озерно-речной сиг относится к другой кладе, нежели байкальские омуль и озерный сиг. Используя топологию сети, деревьев и текущие географические местоположения членов клады, можно сделать некоторые выводы относительно местоположения рефугиумов, в которых выжили предки сигов, а также о времени их появления в оз. Байкал. Байкал расположен в центре распространения всего рода Coregonus и его наиболее разнообразной группы «истинных» сигов. Байкальская пара омуль-озерный сиг является единственным представителем своей собственной клады, II-j, одной из «мажорных» клад в кластере «истинных» сигов (рисунок 4, 5). Вероятно, их предковая форма имела байкальское происхождение и обитала в озере со времени образования группы «истинных» сигов, а, возможно, еще до появления рода Coregonus. Подтверждают это также большие генетические расстояния между некоторыми гаплотипами байкальского омуля (до 2% нуклеотидных замен) (Суханова и др., 1996), сопоставимые с возрастом группы «истинных» сигов в целом (кластер II) (рисунок 2). Несмотря на довольно большой процент нуклеотидных замен между редкими гаплотипами омуля в Байкале, выявленный рестрикционным анализом мтДНК популяций омуля (Суханова и др., 1996), длина ветвей клады II-j

байкальских озерного сига и омуля в ML дереве и «полноразмерной» сети намного короче длины ветвей других основных клад «истинных» сигов в кластере II (рисунок 2, 3). В «короткой» сети общие гаплотипы байкальских озерного сига и омуля оказались центральными и, следовательно, предковыми для всех таксонов рода *Coregonus* (рисунок 5). Полученные результаты свидетельствуют о том, что оз. Байкал могло служить рефугиумом для сигов еще до появления рода *Coregonus*. Многочисленные плейстоценовые оледенения неоднократно вызывали трансформацию экосистемы и, следовательно, популяционной структуры сигов, но не создавали так называемого эффекта «бутылочного горлышка». Такой вариант событий возможен, когда скорость генетического дрейфа для общих аллелей очень низкая в большой эффективно перемешивающейся популяции. Следует отметить, что тот же эффект постоянных преобразований популяции, вероятно, произошел у «истинных» сигов, обитающих на плато Путорана. На протяжении плейстоцена большие взаимосвязанные и/или расположенные рядом озера этой обширной области В постоянно меняли местоположение, перемещались в вертикальном и горизонтальном направлении (то разделяясь, то объединяясь) (Пармузин, 1975; Ендрихинский А.С., 1975, 1976). Таким образом, происходили регулярные вторичные контакты популяций сигов, обитающих в озерах, что обеспечило эффект большой популяции с эффективным перемешиванием.

Сходство нуклеотидных последовательностей между байкальскими омулем и озерным сигом, описанное в этой работе и предыдущих исследованиях (Sukhanova et al., 2000, 2002, 2004; Politov et al., 2000, 2002), свидетельствует об их недавнем симпатрическом происхождении в оз. Байкал. Омуль из оз. Кулинда (в бассейне Северного Байкала) имеет гаплотип, который является производным от гаплотипа байкальских омуля и озерного сига и поэтому не может быть их предком. Оз. Кулинда – одно из группы верхнекичерских озер в пойме р. Кичеры, притока оз. Байкал. Эти небольшие озера расположены на расстоянии 80 км к северу от Байкала и имеют ледниково-тектоническое происхождение (Базаров,

1986). Кулиндинский омуль ранее был описан как местная популяция байкальского омуля (Смирнов и др., 1987а, б). В настоящее время омуль из оз. Байкал не может попасть в оз. Кулинда из-за порогов в верхнем течении р. Кичеры. Таким образом, вполне вероятно, что во время одного из оледенений, произошедших после расхождения основных линий «истинных» сигов, некоторые представители, нерестящиеся в р. Кичере, были изолированы от других популяций сиговых оз. Байкал непроходимыми порогами. Определение точного возраста кулиндинского омуля потребует отдельного генетического анализа. Другой представитель сиговых оз. Байкал, байкальский озерно-речной сиг, принадлежит к кладе II-d, образованной только гаплотипами бассейна р. Енисей. Его гаплотип производный и эволюционно самый молодой, занимает верхнюю часть ветви в сети MJ (рисунок 4). Лишь одна-две мутации отделяют его от гаплотипа горбоносого сига. Поэтому появление озерно-речного сига в оз. Байкал является самым последним эволюционным событием в этой ветви сети и может быть связано с образованием ангарского стока из озера (около 60 тыс. лет назад (Мац и др., 2002)). Соответственно, озерно-речной сиг в Байкале имеет аллопатрическое происхождение. Топология и состав клады предполагает, что предок этой клады, скорее всего, обитал в рефугиуме бассейна р. Енисей. Любая из впадин, расположенных в Саяно-Алтайских горах или в юго-западной части Байкальской рифтовой зоны, могла послужить таким рефугиумом, например, Дархатская, Косогольская и Тункинская.

4.1.4. Причина недавней дивергенции байкальских омуля и озерного сига

Объединив данные, полученные в ходе этого исследования, с доступной опубликованной информацией (филогенетические взаимоотношения, генетический полиморфизм, экология, геологическая и климатическая история озера), можно предположить, как протекала эволюция сиговых оз. Байкал. Принимая во внимание наличие строгой репродуктивной изоляции во времени и пространстве байкальских омуля и озерного сига, и, в то же время, сродство нуклеотидных последовательностей (Politov et al., 2000, 2002; Sukhanova et al.,

2000. 2002), можно сделать вывод об ИХ недавнем симпатрическом видообразовании. Следует отметить, что все сиговые оз. Байкал, омуль, озерный сиг и озерно-речной сиг, подразделены на популяции, различающиеся, по крайней мере, местами нереста. Например, омуль имеет сложную внутривидовую структуру: каждая из трех его экологических форм (пелагическая, прибрежнопелагическая и глубоководная) состоит из нескольких популяций, разделенных, в свою очередь на субпопуляции сроками и местами нереста в реках (Smirnov, 1992). Полученные ранее данные по генетическому полиморфизму всех сиговых Байкала (Суханова и др., 1996, Sukhanova et al., 2000, 2004; Слободянюк и др., 1993; Мамонтов, Яхненко, 1987, 1995; Brzuzan et al., 1998; Politov et al., 2002, 2004; Gordon et al., 2005) указывают на то, что подразделение на популяции произошло недавно. Молодой возраст популяций озерно-речного сига можно объяснить его недавним появлением в Байкале. Однако причина молодого возраста омуля и озерного сига менее ясна. Если предок омуля и озерного сига в Байкале появился около 1,5 млн лет назад, то почему за такой большой промежуток времени не возникли генетически хорошо различимые формы? Вероятно, это связано с геолого-климатической историей озера и биологическими особенностями Постоянные события, сиговых рыб. геоклиматические происходившие на протяжении всего плейстоцена на территории Байкальской рифторовой зоны и приводившие к внутренним изменениям в архитектуре водного бассейна и смешиванию ихтиофаун, с одной стороны, и способность образовывать жизнеспособные межвидовые гибриды «сиг х омуль», с другой, могут объяснить незначительные генетические отличия, указывающие на мнимую молодость байкальских сиговых.

4.2. Микросателлитный анализ

Во всех исследованных выборках байкальских сиговых присутствуют достоверные отклонения частот аллелей от равновесия Харди–Вайнберга (таблица 7): всего 22 случая, в 17 из которых наблюдали избыток гомозигот, а в пяти избыток гетерозигот. Известно, что наличие нуль-аллелей может вызвать

проявление ложной гомозиготности у гетерозиготных особей. Анализ на наличие «нулевых» аллелей (таблица 5, приложение I) выявил, что из 17 обнаруженных случаев избытка гомозигот, 11 может быть вызвано их присутствием. Остальные 11 случаев (6 – избыток гомозигот и 5 – избыток гетерозигот) определены только в выборках из популяций омуля. Гипотезу о действующем на локусы отборе в данной случае можно отвергнуть, если полагать, что микросателлитные локусы селективно нейтральны. Возможность инбридинга при отклонении в сторону гомозиготности можно рассматривать только для посольской популяции омуля, в выборке которого недостаток гетерозигот наблюдался по всем анализируемым локусам, независимо от наличия или отсутствия «нулевых» аллелей. Интенсивное искусственное воспроизводство посольского омуля, берущее начало с 50-х годов 20-го века на сегодняшний день полностью заменило естественное (Смирнов и др., 2009), что и могло привести к инбридингу. В остальных трех наиболее полиморфных популяциях омуля наблюдается как снижение гетерозиготности по некоторым локусам (баргузинской - 22b и Cocl23), селенгинской - Caml и верхнеангарской – *Cam1*), так и повышение (баргузинской – *Cam1*, селенгинской - 22b и верхнеангарской - Cam5). Такой результат согласуется с эффектом Валунда, когда изменениям подвержена частота гетерозигот только тех локусов, в которых варьируют аллельные частоты между субпопуляциями. При эффекте Валунда частота некоторых гетерозигот понижается, других повышается или не меняется (Хедрик, 2003). Это мы и можем отметить в указанных популяциях, для которых наличие субпопуляционной структуры детально описано морфоэкологическими методами (Смирнов и др., 2009). Для небольшой и географически обособленной кулиндинской популяции омуля можно было бы ожидать повышенный уровень гомозиготности в связи с интенсивным дрейфом генов и инбридингом. Тем не менее, такого смещения не обнаружено. Напротив, обнаружено преобладание гетерозигот в двух локусах (22b и Cam5). Учитывая, что озеро Кулинда расположено на пути реки Кичера, которая протекает через еще одно выше расположенное Верхнекичерское озеро, населенное этим же

омулем, можно полагать, что в данном случае наблюдается эффект смешивания обособленных субпопуляций, приводящий к смещению частот аллелей от соотношения Харди-Вайнберга.

Garza-Williamson индекс говорит прохождении популяций через 0 бутылочное горлышко (Garza, Williamson, 2001), что согласуется с результатами анализа генетического полиморфизма мтДНК. Так, результаты рестрикционного анализа мтДНК небольшого количества особей чивыркуйской и маломорской популяций озерного сига свидетельствуют о резком уменьшении его численности во время плейстоценовых похолоданий (Brzuzan et al., 1998). Полученные данные также согласуются с результатами молекулярно-филогенетических реконструкций на основе последовательностей гена цитохрома b мтДНК байкальских сиговых, согласно которым дивергенция между байкальскими омулем и озерным сигом произошла в недавнем геологическом прошлом, вероятнее всего, после последнего Сартанского оледенения (Sukhanova et al., 2012). На схеме, которая постороена на основе F_{ST} значений по данным полиморфизма пяти микросателлитных локусов популяций байкальских сиговых рыб, популяции омуля кластеризованы в одну группу с небольшими попарными генетическими расстояниями, что говорит о недавнем времени дивергенции этих популяций (таблица 7, рисунок 7Б). Озерные сиги тоже кластеризованы в одну группу с небольшими попарными генетическими расстояниями, что также свидетельствует об их недавней дивергенции (таблица 7, рисунок 7Б). Расстояния между группой популяций омуля и группой популяций озерного сига также небольшие, из чего можно заключить, что байкальские омуль и озерный сиг, в свою очередь, тоже разошлись в недавнем геологическом прошлом, что согласуется с данными упомянутого выше молекулярно-филогенетического анализа (Смирнов и др., 2009; Sukhanova et al., 2012). Большое расстояние отделяет эти группы от популяции кулиндинского омуля, что согласуется с ее географической изолированностью от всего комплекса сиговых Байкала. Как уже отмечалось, проникновению омуля в оз. Кулинда (бассейн Байкала) препятствуют

непреодолимые пороги, находящиеся в верховьях р. Кичеры, вытекающей из озера (Смирнов и др., 2009; Базаров, 1986). Полностью изолированная небольшая популяция быстро накапливает различия за счет большой скорости генетического дрейфа. Промежуточное положение верхнеангарской популяции омуля между остальными популяциями омуля и кулиндинским омулем свидетельствует о наличии потока генов из оз. Кулинда в р. Верхнюю Ангару и согласуется с географией мест нереста популяций. Также на большом расстоянии находится верхнеангарская популяция озерно-речного сига (рисунок 7 Б), что согласуется с гипотезой о длительной аллопатрической изоляции его предковой формы за пределами озера и данными филогенетического анализа (Sukhanova et al., 2012). В то же время, одинаковая удаленность кулиндинской популяции омуля и верхнеангарской популяции озерно-речного сига от других популяций этих видов не соответствует генетическим расстояниям, определенным на основании анализа полиморфизма мтДНК. Это в очередной раз свидетельствует о том, что с увеличением времени дивергенции генетические расстояния, определяемые с помощью микросателлитов, становятся не пропорциональны времени по причине насыщения мутациями, которое приводит к гомоплазии (конвергенции аллелей).

Иерархическая кластеризация широко применяется ДЛЯ выявления подразделенности внутри крупных кластеров в популяционной генетике рыб, включая лососевые виды (Vähä et al., 2007; Zhivotovsky et al., 2014; Semenova et al., 2015). Рисунок подразделенности исследуемых выборок на кластеры в программе STRUCTURE (рисунок 8) также согласуется с результатами молекулярно-филогенетического анализа (Смирнов и др., 2009; Sukhanova et al., 2012) и недавним временем дивергенции популяций омуля и озерного сига в В отдельные кластеры обособились присутствии потока генов. только верхнеангарская популяция озерно-речного сига и кулиндинская популяция омуля (попарное значение $F_{ST}=0,306$).

В конечном счете, рисунок генетического полиморфизма, основанный на анализе ядерных генетических маркеров (микросателлитов) путем сравнения

большого количества популяций, представляющих все три вида байкальских сиговых, а так же его сопоставление с имеющимися литературными данными (Мамонтов и Яхненко, 1987; Яхненко и др., 1992; Мамонтов, Яхненко, 1995; Mamontov, Yakhnenko, 1998; Суханова и др., 1996; Смирнов и др., 2009; Смирнов и др., 1987а; Слободянюк и др., 1993; Politov et al., 2002; Politov et al., 2004) окончательно подтвердил предположение 0 недавней симпатрической дивергенции байкальских омуля, озерного сига и их популяций (Суханова и др., 1996). Полученные результаты согласуются с существующей географической изоляцией предковой формы байкальского омуля в оз. Кулинда ледниковотектонического происхождения (Базаров, 1986). Очевидная обособленность байкальского озерно-речного сига, нерестящегося в р. Верхняя Ангара, от остальных выборок по всем анализируемым параметрам только подтверждает гипотезу об изоляции (аллопатрической дивергенции) его предка за пределами озера в неком рефугиуме, связанным с Ангаро-Енисейским бассейном с последующим образованием енисейской речной формы, которую ряд авторов определяет как горбоносого сига, и конспецифичной ему байкальской формы, обитающей в оз. Байкал и его притоках, в которых и проходит нерест (Смирнов и др., 2009; Sukhanova et al., 2012; Бочкарев и др., 2017).

4.3. Сходство и различие в дифференциальных паттернах экспрессии между пелагическим и бентосным экотипами симпатрических пар сигов

В отличие от множества исследований, посвященных геномной основе адаптивной фенотипической дивергенции, роль экспрессии генов в течении видообразования была значительно меньше исследована и, следовательно, менее понятна. Тем не менее, сходство паттернов дифференциальной экспрессии генов между близкородственными парами видов может отражать роль естественного отбора в процессе экологического видообразования. Ранее проведенные полногеномные сравнения с использованием субтрактивной гибридизации не выявили какие-либо видоспецифичные различия между байкальским омулем и озерным сигом (Быченко и др., 2009а; Быченко и др., 2009б). Этот результат может подтверждать гипотезу о недавней дивергенции исследуемых видов. Действительно, пара байкальские омуль и озерный сиг представляет собой один множественной ИЗ случав дивергенции «истинных» сигов на экотипы (экологические формы) или зарождающиеся виды, которые развились в озерах Европы и Северной Америки сравнительно недавно, вслед за последним оледенением 15 тыс. лет назад (Østbye et al., 2006). Биологи, изучающие ихтиофауну североамериканских и евразийских озер, сообщили, что в условиях одного и того же озера симпатрические экотипы различаются по количеству жаберных тычинок, индивидуальным темпам роста, возрасту и размеру по достижении половой зрелости, рациону и среде обитания. Если сравнивать те же самые экотипы из других водоемов, то в пределах одного и того же экотипа обнаруживается. Тем не отличий практически не менее, большинство симпатрических экотипов имеют доказанные генетические различия, и подобные экотипы из разных озер, вероятно, имеют полифилетическое происхождение. Эти данные свидетельствуют о том, что имел место процесс параллельной повторяющейся эволюции, сопровождающийся послеледниковым расхождением на пелагические и бентосные ниши в каждом из этих озер (Bernatchez et al., 2010). Жизненный цикл и экология симпатрической пары байкальские омуль/озерный сиг оз. Байкал также хорошо задокументированы (Smirnov, 1992; Смирнов и др., 2009), а анализ полиморфизма мтДНК и микросателлитов (см. разделы 4.1 и 4.2; Sukhanova et al., 2012) свидетельствует о подобном послеледниковым расхождении на пелагическую и бентосную ниши.

В течение последних нескольких лет исследования экспрессии генов интенсивно проводились с целью понимания молекулярной основы адаптивного расхождения между экотипами сига *C. clupeaformis* в североамериканских озерах (Jeukens et al., 2009; Derome et al., 2006; St-Cyr et al., 2008). Исследования проводились на микрочипах и с использованием секвенирования нового поколения как в контролируемых (лабораторных), так и в естественных (двух озерах) условиях и включали три стадии жизненного цикла (эмбрионы, ювенильная стадия и взрослые) и три ткани (белые мышцы, печень и мозг). Сотни дифференциальную экспрессию генов В трех тканях показали между пелагическими и бентосными сигами и были классифицированы по меньшей мере по 30-ти различным функциональным группам. У пелагического сига были более активны гены, потенциально связанные с выживанием (энергетический обмен, сокращение мышц, гомеостаз, липидный обмен и детоксикация), тогда как гены, связанные с ростом (синтез белка, клеточный цикл и рост клеток), как правило, сильнее экспрессировались у бентосной формы (Bernatchez et al., 2010). В целом эти исследования транскриптома в сочетании с физиологическими данными (Trudel et al., 2001) показывают, что энергетический метаболизм является основной биологической функцией, связанной с дивергенцией сигов на пелагическую и бентическую формы. Существует множество свидетельств того, что селекция действует сильнее на пелагических сигов, чем на бентических (Derome et al., 2008). Ранее с помощью метода SAGE было показано, что экспрессия генов в мозге байкальских омуля и озерного сига имеет аналогичную картину. Даже с низким абсолютным количеством секвенированных тегов (коротких 30 пн фрагментов РНК) удалось установить, что теги, более представленные в байкальском омуле (пелагический экотип), в основном схожи с участками генов метаболизма. Напротив, теги, более представленные у озерного сига (бентический экотип), имели сходство с генами синтеза белка и регуляторными генами (Bychenko et al., 2014). Метод NGS, примененный в данном исследовании, подтвердил эти результаты, а также выявил отличия в широкого У экспрессии более спектра генов. озерного сига выше экспрессируются гены, связанные с ростом и развитием, слухом и зрением, а также предполагаемой способностью к обучению и памятью, а у байкальского омуля – гены, связанные с иммунитетом, внутриклеточным транспортом, II, III). По регуляцией И репродукцией (приложение сравнению c североамериканскими озерами, по-видимому, в оз. Байкал на пелагический экотип селекция действует еще сильнее. Об этом свидетельствуют следующие

экологические особенности байкальской симпатрической пары сигов: (1) полная репродуктивная изоляция экотипов / видов по времени нереста (осень / зима) и месту нереста (реки / озерные отмели); (2) многоуровневый характер внутривидовой фенотипической дивергенции, выраженный у пелагического байкальского омуля (Смирнов и др., 2009).

В проведенном нами исследовании использовали только мозговую ткань особей из природных источников.

Секвенирование транскриптомов пелагического и бентического экотипов сигов C. clupeaformis, обитающих в североамериканских озерах, выявило, что 14 генов (митохондриальных И ядерных), вовлеченных В энергетический метаболизм, проявляли выраженные различия частоте аллелей В И дифференциально экспрессировались (Renaut et al., 2010). Среди них 7 митохондриальных генов (субъединицы цитохрома С 1, 2 и 3, NADHдегидрогеназы 1, 4 и 5 и цитохром b) и 7 ядерных генов (субъединица 6 цитохромного косплекса b-c1, субъединица d АТФ-синтазы, малатдегидрогеназа, глицеральдегид-3-фосфатдегидрогеназа, креатинкиназа, сукцинил-СоА-лигаза и предшественник белка 3, связанного с ангиопоэтином). В нашей байкальской паре гены дыхательной цепи дифференциально симпатрической также экспрессировались. Коэффициенты транскрипции для разных семейств или субъединиц таких белков, как цитохромоксидаза, цитохром Р450 и АТФ-синтаза, у озерного сига и байкальского омуля не были равны. В проведенном нами NGS исследовании также была подтверждена более высокая экспрессия генов метаболизма байкальского энергетического y омуля. Например, гены фосфолипид-транспортной АТФазы, АТФ-цитрат синтазы, АТФ-чувствительнго внутреннего ректификатора калиевого канала, ген дегидрогеназы / редуктазы (семейство SDR) и др. (см. Приложении II).

N. Derome с соавторами в 2006 году протестировали общую гипотезу о том, что параллельная фенотипическая эволюция карликовых и нормальных экотипов

сигов сопровождалась изменениями в экспрессии генов, вовлеченных В двигательную активность (плавание) и рост. Сравнивались транскриптомы белой мышечной ткани (Derome et al., 2006). Как и предсказывалось (Trudel et al., 2001), у карликовых форм эти гены транскрибировались более активно. Из них особый интерес представляют две группы: первая (гены парвальбумина, который принадлежит к семейству внутриклеточных кальций-связывающих белков, играющих важную роль в регуляции сокращения мышц (Rall, 1996)) и вторая (гены, кодирующие белки семейства β/γ -кристаллинов, связанных каталитической активностью (Piatigorsky, 2003)). Это семейство, вероятно, обеспечивает повышенный энергетический выход при плавании.

Позже N. Derome с соавторами (Derome et al., 2008) обнаружили 12 геновкандидатов, дифференциально экспрессирующихся у карликовых и нормальных сигов, которые содержались в контролируемых условиях, также как у ранее изученной симпатрической пары, обитающей в природных условиях (Derome et al., 2006). Из этих генов кандидатов гены, кодирующие парвальбумин, актин, саркоплазматический/эндоплазматический кальциевый ретикулярный канал, креатинкиназу, АТФ-синтазу g, пируваткиназу, лизоцим и рибосомальный белок, были сильнее экспрессированы у карликов. Гены, кодирующие субъединицу 3 цитохромоксидазы, предполагаемую NADH-дегидрогеназу, тропонин И серин/треонин белковую фосфатазу, сильнее экспрессировались у нормальной формы сига (Derome et al., 2008). У нормальных сигов больше экспрессировались гены, связанные с ростом, синтезом белка, ростом клеток и гены, запускающие клеточный цикл. В естественных и в контролируемых условиях гены, участвующие в различных стадиях синтеза белка, были сильнее экспрессированы у нормального сига. Также М. Laporte с соавторами было установлено, что карликовый сиг имеет большую массу печени, повышенную общую активность цитохром оксидазы и цитратсинтазы, что связано с метаболизмом печени (Laporte et al., 2016). Возможно, увеличение печени в процессе эволюции было связано с тем, что карликовые сиги потребляли пищи больше, чем другие виды сигов, и для

96

было эффективно нормальной жизнедеятельности ИМ необходимо ee утилизировать за счет усиленного глюконеогенеза, фильтрации крови, а также возможности справляться с отходами (Laporte et al., 2016). Методом SAGE было установлено, что значительная часть тегов, которые были в два-три раза более представлены у байкальского озерного сига, чем у байкальского омуля, имели сходство с сегментами регуляторных генов, в том числе с геном фактора роста фибробластов (FGF), который играет ключевую роль в пролиферации и дифференциации различных клеток и тканей. Наблюдаемая дифференциальная экспрессия регуляторных генов может быть обусловлена различными темпами роста байкальских омуля и озерного сига: озерный сиг весит больше, т. к. абсолютное увеличение массы тела озерного сига выше, чем у омуля на протяжении всей жизни. Такое же объяснение может быть справедливо и для тегов, сходных с сегментами мРНК генов рибосомных белков 60S и 40S субъединиц, таких как S5, S11, L7 и L13. Исключением являются теги, сходные с мРНК рибосомального белка L31, входящего в состав 60S субъединицы.

При исследовании карликового было сига показано, что сильнее экспрессировались гены, играющие ключевые роли В механизмах продуцирования энергии, таких как гликолиз (GDPH, альдолаза A и B) и цикл Кребса (малатдегидрогеназа), а также гены, облегчающие перенос макромолекул, главным образом липидов, в целевые клеточные компартменты (Laporte et al., 2016). J. St-Cyr с соавторами наблюдали у карликов повышенную экспрессию трех генов, связанных с биологическими процессами, вовлеченными в сеть метаболизма (фруктоза-бифосфат-альдолаза энергетического Β, малатдегидрогеназа, GDP-L-фукозасинтетаза), а также трех генов, участвующих в метаболизме липидов и транспорте (бета2-гликопротеин I, гастротропин). Напротив, три других гена липидного метаболизма (аполипопротеин AI-1, A-IV и CII), участвующие в поглощении липидов, а также один ген, участвующий в окислительном фосфорилировании жирных кислот (цепь NADH-убихиноноксидоредуктазы 1) были менее экспрессированы у карликов (St-Cyr et al., 2008).

Вероятно, у карликов усилен экспорт липидных продуктов в сторону энергоемких Повышенная систем, таких как скелетные мышцы. экспрессия генов, участвующих в путях детоксикации (глутатион-S-трансфераза, карбоксилестезаза 22, альдегид-дегидрогеназа 9, член семейства A1-like 1, глютатионпероксидаза в плазме), наблюдаемая у карликов, также потенциально может быть связана с более высокой метаболической активностью и более активным плаванием. Более высокие энергетические потребности и метаболическая активность будут иметь тенденцию генерировать пропорционально большее количество метаболических побочных продуктов и отходов, которые необходимо будет обезвредить, чтобы поддерживать нормальную мышечную активность и избегать осложнений, вызванных окислительным стрессом (Claiborne, 1998).

сравнительные исследования показывают Различные более высокую глицеральдегид-3-фосфатдегидрогеназы, экспрессию транскриптов предшественника фруктозо-бисфосфата альдолазы А, бета-енолазы и трипсина-1, более низкую экспрессию транскриптов предшественника а также митохондриальной цитохром полиоксидазы Via, нуклеозиддифосфатилкиназы и нуклеозиддифосфаткиназы у карликового экотипа по сравнению с нормальным в разных тканях и на разных стадиях жизненного цикла (Jeukens et al., 2010, 2011; Gagnaire et al., 2013; Hebert at al., 2013; Dalziel at al., 2015; Laporte et al., 2015; Laporte et al., 2016). В исследованиях Jeukens с соавторами было доказано, что дикие и выращенные в лаборатории карлики имели более высокое содержание мРНК гликолитического гена в мышцах (LDH A) (Jeukens et al., 2009). Также в этих исследованиях показано, что у карликового сига сильнее экспрессируются гены, связанных с иммунитетом, что может быть связано с локальной адаптацией, которая лежит в основе дивергенции популяций и видообразования (Goetz et al., 2010). Транскрипты, связанные с репликацией и репарацией ДНК, также были более представлены у карликов по сравнению с нормальными экотипами. Можно предположить, что более высокая скорость метаболизма карлика индуцирует больше повреждений в ДНК и, следовательно, нужны более активные пути ее

репарации.

4.4. Сравнение микробиомов кишечника байкальских омуля, озерного сига и их гибридов первого поколения

Мы проанализировали микробные сообщества кишечника байкальских омуля, озерного сига и их гибридов первого поколения, которые прежде были рассмотрены с точки зрения липидного состава в тканях мышц и печени (Vasilieva et al., 2016), морфофункциональных особенностей эритроцитов (Яхненко и др., 2016), а также морфологического разнообразия ультраструктуры слухового эпителия (Sapozhnikova et al., 2017). Впервые метод NGS использовали для изучения микробиомов кишечника сиговых Байкала. Сравнительный анализ кишечной микробиоты рыб, выращенных в одних и тех же условиях, позволяет описать основной («коровый») кишечный микробиом, который определяется как группа микробов, обычно встречающаяся в микробиоме хозяина, а также отдельные филотипы, которые могут быть существенными для организмахозяина. Этот анализ также позволяет определить различия между видами рыб и между населяющими их кишечники микробиотами (Skrodenyte-Arbaciauskiene et al., 2008; Smriga et al., 2010; Larsen et al., 2013, 2014; Carda-Diéguez et al., 2014; Kormas et al., 2014). Для получения информации о разнообразии микробиоты и ее вариативности между различными видами рыб можно объединять образцы от разных индивидуумов и использовать их для анализа микроорганизмов методом культивирования (Skrodenyte-Arbaciauskiene et al., 2008), ПЦР и клонирования ПЦР продуктов с последующим секвенированием клонов (Smriga et al., 2010), либо методом NGS (Larsen et al., 2014). В текущем исследовании методом NGS проанализировали ПЦР-библиотеки фрагмента гена 16S рРНК для оценки «корового» микробиома и минорных филотипов сиговых Байкала и их гибридов первого поколения. Бутстреп оценки кластерной дихотомии показали существенную дифференциацию сиговых и их гибридов F1. Омуль отличался от гибридов $\stackrel{\circ}{\rightarrow}$ омуль \times $\stackrel{\circ}{\circ}$ озерный сиг и $\stackrel{\circ}{\rightarrow}$ озерный сиг \times $\stackrel{\circ}{\circ}$ омуль, также, как и озерный сиг (рисунок 10). Анализ индекса разнообразия среди библиотек микробиомов показал самое низкое количество ОТИ в библиотеке озерного сига (таблица 10). Дифференциация между гибридами F1 ♀озерный сиг× ♂ омуль и ♀ омуль× в озерный сиг указывает на то, что наследственность организма хозяина влияет на микробные сообщества по крайней мере в паре омуль и гибрид ♀ омуль× в озерный сиг. Эти результаты выявляют кластерную дихотомию микробных сообществ, где омуль и гибрид ♀ омуль × ♂ озерный сиг образуют отдельный кластер со 100% бутстреп поддержкой. Затем дифференциация поддерживается между сигом и гибридом ♀озерный сиг× ♂ омуль (бутстреп 75%). Индексы разнообразия Chao1 и Shannon показали более низкие значения у байкальских сиговых по сравнению с другими исследованными дикими и выращенными видами рыб: например, с азиатским серебряным карпом Hypophthalmichthys molitrix Valenciennes, 1844 и северной доросомой Dorosoma (Ye et al., 2014), с различными видами рыб, cepedianum Lesueur, 1818 собранными в прибрежных водах Японии (Asakura et al., 2014), с морским сибасом Dicentrarchus labrax Linnaeus, 1758, содержащемся на функциональной диете (Carda-Diéguez et al., 2014), с морским лещом Sparus aurata Linnaeus, 1758, выловленным из дикой среды (Kormas et al., 2014), с большеголовым карпом Aristichthys nobilis Richardson, 1845 (Li et al., 2014). Это может быть связано с более низким пищевым разнообразием в экологической нише обитания байкальских омуля и озерного сига.

ОТU, найденные только в каком-нибудь одном микробиоме, были достаточно скудны (0,6–6,4%), предполагая их особую роль по крайней мере в исследуемых образцах. Доминирующим филумом во всех образцах был Proteobacteria, представленный от 77 до 89% во всех образцах, но это было связано с преобладанием всего одного ОТU, относящегося к *Serratia* sp. Представители филотипа *Serratia* – грамотрицательные, факультативные анаэробы, стержнеобразные бактерии семейства Enterobacteriaceae. Наиболее

распространенный вид в роду, S. marcescens Bizio, 1823, обычно является единственным патогеном и вызывает нозокомиальные инфекции. Другие виды Serratia были обнаружены в кишечнике у некоторых первичноротых животных: у мухи цеце – S. glossinae Geiger et al., 2010 (Geiger et al., 2010), у инжирной осы – S. ficaria Grimont et al., 1981 (Grimont et al., 1979), у нематоды – S. nematodiphila Zhang et al., 2009 (Zhang et al., 2009). Члены этого рода производят характерный красный пигмент, продигиозин, также их можно отличить от других членов семейства Enterobacteriaceae по уникальному производству трех ферментов: ДНКазы, липазы и желатиназы (Garrity, 2005). В кишечном микробиоме рыб аналогичная распространенность протеобактерий также была показана (Sullam et al., 2012), кроме того в некоторых случаях было выявлено доминирование единственной ОТU Diaphorobacter sp. (Kormas et al., 2014). Как сообщали К.Е. Sullam с соавторами, существуют значительные различия микробиомов у пресноводных и морских рыб, а также наблюдается конкретное доминирование Aeromonadales и Enterobacteriales в кишечнике пресноводных рыб, что хорошо согласуется с нашими данными по Serratia sp. В проводимом исследовании были обнаружены только две OTU, которые присутствовали во всех образцах в приблизительно одинаковом соотношении: Serratia и Achromobacter (рисунок 13). Это представляет особый интерес, потому что Serratia может быть связана с автохтонной микробиотой, которая представляет фракцию от 70,13 до 87,72% в общем микробиальном сообществе. Achromobacter – это строго аэробная бактерия, найденная в различных пресноводных средах, и может относится к микроорганизмам. Присутствие общего аллохтонным «резидента» или

автохтонной ОТU во всех кишечных микробиомах с высоким уровнем обилия, превышающим 77%, указывает на наличие «корового» микробиома бактериальных сообществ сиговых Байкала и на его потенциальную роль в питании и иммунитете организма-хозяина. Другие бактерии варьируют от вида к виду, демонстрируя большее разнообразие в омуле и гибридах. Микробиом кишечника озерного сига содержит более высокую долю аллохтонных

микроорганизмов по сравнению с остальными образцами (рисунок 13) и не включает такие бактерии, как Porphyromonas, Peptococcus и Clostridium, чьи фракции варьировали в пределах 2,6-6,2, 0,3-0,6 и 0,3-0,7%, соответственно. Принимая во внимание, что все двухлетние рыбы были выращены при одинаковых условиях кормления, интенсивности света и температуры воды, можно сделать вывод о том, что только наследственность могла влиять на микробиальные сообщества. Во время выращивания омуль продемонстрировал более активное поведение и меньшее потребление пищи в отличие от пассивного озерного сига. Поведение рыб в аквариумах соответствовало таковому в природе. Омуль – активный мигрант пелагических вод, озерный сиг – батипелагический бентофаг, кормящийся около дна при относительно низких скоростях (Скрябин, 1969; Смирнов, 1974). Вероятно, высокая фракция аллохтонной микробиоты в кишечнике сига и относительно низкое разнообразие минорных бактериальных групп объясняется большим количеством потребляемой пищи и, в свою очередь, связано с соответствующим экотипом. Уменьшение числа кишечных ОТИ от омуля к гибридам, а затем к сигу (таблица 10, рисунок 13) может быть связано с небольшим разнообразием пищевых продуктов, потребляемых озерным сигом в отличие от омуля. Гибриды находились в промежуточном положении. Однако каждый гибрид был ближе к тому виду, самка которого использовалась для оплодотворения (рисунок 10). Очевидно, что состав микробных сообществ и особенности поведения гибридов в рамках исследования согласуются друг с а также могут объясняться наследственностью другом, (промежуточное положение гибридов F1 между родительскими видами и влияние наследования по 4 материнской линии, по крайней мере, В паре омуль И гибрид омуль × б озерный сиг).

В заключении можно сказать, что структура микробиома кишечника двухлетних байкальских омуля, озерного сига и их гибридов F1 отражает наследственность организма-хозяина. Однако было найдено несколько ОТU доминирующих у всех индивидов, подразумевая существование «корового» сообщества. бактериального Бактериальные паттерны всех микробиомов кишечника были очень похожи на уровне филума. Все микробиальные сообщества различались только в составе минорных бактериальных таксонов. Причина этого, по-видимому, в существовании близкого филогенетического родства между изучаемыми видами, поскольку их симпатрическая дивергенция на пелагический и бентосный экотипы произошла в недавнем геологическом прошлом (Sukhanova et al., 2012). Полученные данные, согласуются с результатами исследования проведенными M.Sevellec с соавторами (Sevellec et al., 2019), где наблюдались карликовые, нормальные сиги и их гибриды первого поколения, выращенные в контролируемых условиях и пойманные в неволе. В большинстве экспериментов наблюдался материнский эффект и наличие «корового» микробиома, сформированного шестью родами (Sevellec et al., 2019). Микробиота обоих реципрокных гибридов отличалась от той, которая наблюдалась в родительских формах.

ЗАКЛЮЧЕНИЕ

Проведенный молекулярно-филогенетический анализ мтДНК, включивший основных представителей рода Coregonus и большинство «истинных» сигов, обитающих в водных бассейнах, соседствующих с оз. Байкал, позволил сделать выводы о внутрибайкальском происхождении байкальских сиговых от общего предка и о существовании на территории Байкальской рифтовой зоны и Саяно-Алтайской горной страны двух этапов быстрого кладогенеза в эволюции рода, кардинально повлиявших на его современную филогенетическую структуру. При этом байкальские омуль и озерный сиг очень близки филогенетически и являются единственными членами своей клады. Их предок дивергировал от других «истинных» сигов, не покидая озеро. Байкальский озерно-речной сиг, напротив, находится в одной кладе с некоторыми обитателями бассейна р. Енисей и имеет гаплотип, производный от гаплотипа своих ближайших родственников из Енисейского бассейна, что свидетельствует о длительной аллопатрической изоляции предка байкальского озерно-речного сига от предка байкальских омуля и озерного сига в неком рефугиуме в бассейне р. Енисей, и о недавнем возвращении в озеро (вероятно, с появлением Ангарского речного стока из Байкала около 60 тыс. лет назад). Ближайшее генетическое родство байкальских озерного омуля И сига полностью подтвердилось В последующем микросателлитном анализе. Из схемы генетических расстояний между популяциями байкальских сиговых рыб, построенной на основе Fst значений по данным полиморфизма пяти микросателлитных локусов, наглядно видно, что популяции омуля кластеризованы в одну группу с небольшими попарными генетическими расстояниями, а популяции озерного сига в другую группу. Расстояния между этими группами невелики, на основании чего можно заключить, что озерный сиг и омуль дивергировали друг от друга в недавнем геологическом прошлом. На большом расстоянии от этих групп находится популяция омуля из оз. Кулинда (бассейн р. Кичера, северного притока оз.

Байкал), что подтверждает ее изолированность от всего комплекса байкальский омуль/озерный сиг. Промежуточное положение верхнеангарской популяции омуля, нерестящейся в еще одном северном притоке оз. Байкал - реке Верхняя Ангара между остальными популяциями омуля и кулиндинской популяцией, повидимому, свидетельствует о наличии потока генов из оз. Кулинда в северные притоки озера. Также на большом расстоянии находится озерно-речной сиг из р. Верхней Ангары, не смотря на наложение сроков и мест нереста с верхнеангарской популяцией омуля, согласуется что с результатами филогенетических исследований, основанных на анализе полиморфизма мтДНК. Так как байкальские озерный сиг и омуль дивергировали друг от друга в последний раз в недавнем геологическом прошлом, соответственно, на уровне ДНК они не должны были накопить большие отличия. В таком случае, приспособление к различным экологическим нишам, вероятнее всего, шло путем появления различий в уровне экспрессии наиболее важных для адаптации генов. Анализ транскриптомов показал: у озерного сига больше экспрессируются гены, связанные с ростом и развитием, в то время как у омуля – гены, связанные с каталитической активностью, регуляцией и иммунитетом. NGS анализ кишечной микрофлоры байкальских сиговых рыб, выращенных в экспериментальных условиях является логичным дополнением к проведенному молекулярнофилогенетическому анализу и анализу транскриптомов. Результаты сравнения микробиомов кишечника байкальских омуля, озерного сига и их гибридов, выращенных в идентичных условиях аквариумного комплекса, начиная с момента оплодотворения, согласуются с результатами филогенетических реконструкций. С одной стороны, сходство структуры основных бактериальных сообществ всех исследованных хозяев на уровне филума и незначительные различия в составе минорных бактериальных таксонов подтверждает близкое родство между изученными видами рыб. С другой, присутствие хоть и минорных различий, но интерпретируемых В как ВЛИЯНИЯ материнского контексте генотипа на микробиом, так и пищевых адаптаций исследуемых видов к занимаемым

экологическим нишам, подтверждает наличие генетически обусловленной адаптивной дивергенции байкальских омуля и озерного сига.

Таким образом, можно утверждать, что предок байкальских сиговых рыб появился в Байкале как минимум 1,5 миллиона лет назад. Современная же популяционная структура сиговых рыб окончательно сформировалась в недавнем геологическом прошлом, после последнего похолодания в плейстоцене.

выводы

1. Озеро Байкал и прилегающие территории – наиболее вероятное место происхождения байкальских сиговых рыб и В целом рода Coregonus. Формирование комплекса этих рыб происходило под непосредственным влиянием колебаний климата в плейстоцене. Байкальские омуль и озерный сиг имеют автохтонное симпатрическое происхождение от предковой формы, сохранившейся непосредственно в озере после глобальных плейстоценовых оледенений. Остальные представители рода *Coregonus* были изолированы в рефугиумах за пределами Байкала. Байкальский озерно-речной сиг имеет аллопатрическое происхождение, являясь потомком внутрибайкальской предковой формы, вернувшимся из Енисейского бассейна в Байкал после более миллиона лет географической изоляции за пределами озера.

2. Популяции байкальских омуля и озерного сига кластеризованы в разные группы. Небольшие генетические расстояния между видами и популяциями внутри видов указывают на то, что очередная симпатрическая изоляция пелагической (байкальский омуль) и бентической (озерный сиг) форм в условиях оз. Байкал произошла после последнего похолодания в плейстоцене.

3. Анализ транскриптомов мозга байкальских омуля и озерного сига методом высокопроизводительного секвенирования РНК (RNAseq) выявил различия в генной экспрессии, которые могут быть связаны с адаптивной дифференциацией: у байкальского омуля более активны гены, связанные с иммунитетом, внутриклеточным транспортом и регуляцией, а у озерного сига – гены, связанные с ростом и развитием.

4. Микробиомы кишечников байкальских омуля и озерного сига имеют сходное «коровое» бактериальное сообщество (несколько доминантных ОТU), что связано с их недавней дивергенцией. Отличия касаются минорных бактериальных таксонов. У озерного сига по сравнению с байкальским омулем меньше разнообразие кишечных ОTU, вероятно, из-за различий в поведении и питании. Гибриды байкальских омуля и озерного сига занимают промежуточное положение

по составу микробиома, но наблюдается материнский эффект, то есть влияние наследственности хозяина на формирование микробиома кишечника.
СПИСОК ЛИТЕРАТУРЫ

- Атлас пресноводных рыб России (под ред. Решетникова Ю.С.). М.: Наука, 2002. Т. 1. 379 с.
- Балдина С.Н., Гордон Н.Ю., Политов Д.В. Генетическая дифференциация муксуна *Coregonus muksun* (Pallas) и родственных видов сиговых рыб (Coregonidae, Salmoniformes) Сибири по мтДНК // Генетика. 2008. Т. 44, № 7. С. 896-905.
- Базаров Д.Д. Кайнозой Прибайкалья и Западного Забайкалья. Новосибирск: Наука, 1986. 181 с.
- 4. Берг Л.С. Рыбы пресных вод СССР и сопредельных стран: в 3 т. М.-Л.: Издво АН СССР, 1948. Т. 1. 468 с.
- 5. Берг Л.С. Рыбы пресных вод СССР и сопредельных стран: в 3 т. М.-Л.: Издво АН СССР, 1949. Т. 2. С. 821-831.
- Богуцкая Н.Г., Насека А.М. Каталог бесчелюстных и рыб пресных и солоноватых вод России с номенклатурными и таксономическими комментариями. М.: Товарищество научных изданий КМК, 2004. 389 с.
- Бочкарев Н.А. Популяционная структура сигов Телецкого озера // Сибирский экологический журнал. 2000. Т. 3. С. 305-313.
- Бочкарев Н.А., Гафина Т.Э. Морфобиологическая характеристика телецкого сига р.Чулышман // Сибирский экологический журнал. 1996. № 2. С. 175-178.
- Бочкарев Н.А., Зуйкова Е.И. Морфобиологическая и экологическая дифференциация симпатрических видов *Coregonus* из Телецкого озера // Зоологический журнал. 2006. Т. 85, № 8. С. 950-958.
- Бочкарев Н.А., Зуйкова Е.И. Популяционная структура сига-пыжьяна (*Coregonus lavaretus pidschian*, Coregonidae) в озерах Тоджинской котловины и в верхнем течении реки Большой Енисей (республика Тыва). Зоологический журнал, 2009а. Т. 88, № 1. С. 47-60.

- Бочкарев Н.А., Зуйкова Е.И. Морфологическая изменчивость сига-пыжьяна в водоемах верхнего течения рек Обь и Енисей и возможные пути расселения. Изв. Иркутского ГУ, сер. Биология. Экология, 2009б. Т. 2, № 2. С. 23-26.
- Бочкарев Н.А., Зуйкова Е.И. Популяционная структура и возможные пути дифференциации сига-пыжьяна (*Coregonus lavaretus pidschian*, Coregonidae)
 в Додотских озерах Тоджинской котловины // Сибирский экологический журнал. 2010. Т.1. С. 41-55.
- Бочкарев Н.А., Зуйкова Е.И., Политов Д.В. Таксономический статус и происхождение некоторых экологических форм сигов вида *Coregonus lavaretus* (L.) из водоемов Сибири // Генетика. 2017. Т. 53. № 8. С. 922-932.
- Бочкарёв Н.А., Зуйкова Е.И., Романов В.И., Черданцев И.А., Беглецов О.А., Захаров Е.С., Ушницкая Л.А., Осипова Н.Н., Пестрякова Л.А. Морфологическая и генетическая изменчивость симпатрических сигов комплекса *Coregonus lavaretus pidschian* из оз. Кутарамакан Хантайской гидросистемы (п-ов Таймыр) // Генетика. 2020. Т. 56, № 5. С. 571-583.
- Быченко O.C., Л.В., Т.Л., Е.Д. 15. Суханова Ажикина Свердлов Дифференциальная экспрессия ТС1-подобных транспозонов семейства близкородственных популяциях DTSsa4 байкальских сиговых // В Биоорганическая химия. 2009а. Т. 35, № 6. С. 853-856.
- Быченко О.С., Суханова Л.В., Уколова С.С., Скворцов Т.А., Потапов В.К., Ажикина Т.Л., Свердлов Е.Д. Геномная близость байкальского омуля и сига // Биоорганическая химия. 2009б. Т. 35, № 1. С. 95-102.
- Воронов М.Г. Эколого-биологические основы повышения эффективности воспроизводства омуля в р. Селенге в современных условиях: автореф... дис.канд. биол. Наук: 03.00.10 / Государственный научно-исследовательский институт озерного и речного рыбного хозяйства. Санкт-Петербург, 1993. 18 с.
- Глызина О.Ю., Глызин А.В., Суханова Л.В., Тягун М.Л., Сапожникова Ю.Л., Белых О.И., Дзюба Е.В., Зайцева А.Н., Куликов В.А., Беломестных Т.В.

Холодноводный пресноводный аквариумный комплекс как основа для научных исследований // Вода: химия и экология. 2012. № 12. С. 78-86.

- Дрягин П.А, Пирожников П.Л., Покровский В.В. Вопросы филогении сиговых (Coregonidae) // Восьмая сессия ученого совета СевНИОРХ. Петрозаводск. 1969. С. 90-92.
- Дрягин П.А. Рыбы реки Чу и рыбохозяйственное использование этой реки // Рыбное хоз-во КиргАССР: (Тр. Кирг. Компл. Эксп. 1932-33 гг.). М.-Л., 1936. Т. 3. Вып. 1. С. 49-87.
- Ендрихинский А.С. Четвертичные отложения // Путоранская озерная провинция. Труды Лимнологического института СО АН СССР, т.20 (40). Новосибирск, 1975, с. 64-97.
- Ендрихинский А.С. О палеолимнологических исследованиях в горах Путорана // Природно-ландшафтные основы озер Путорана. Труды Лимнологического института СО АН СССР, т.22 (42). Новосибирск, 1976, с. 188-218.
- 23. Ермоленко Л.И. Генетическая дивергенция сигов рода *Coregonus* II // Генетика. 1991а. Т. 27, № 3. С. 515-522.
- Ермоленко Л. И. Генетическая изменчивость и межпопуляционные генетические различия у чира *Coregonus nasus* Pallas // Генетика. 19916. Т. 27, № 2. С. 299-303.
- 25. Карабанов Е.Б. Геологическое строение осадочной толщи озера Байкал и реконструкция климатических изменений Центральной Азии в позднем кайнозое: автореф. Дис. ... д-ра геол.-мин. Наук: 04.00.01 / Институт литосферы окраинных и внутренних морей РАН. Москва, 1999. 72 с.
- 26. Карабанов Е.Б., Прокопенко А.А., Кузьмин М.И. Оледенения и межледниковья Сибири – палеоклиматическая запись из озера Байкал и ее корреляция с западно-сибирской стратиграфией (эпоха прямой полярности Брюнес) // Геология и геофизика. 2001. Т. 42, № 1-2. С. 64-75.
- 27. Карасев Г.Л. Рыбы Забайкалья. Новосибирск: Наука, 1987. 296 с.

- Крогиус Ф.В. Материалы по биологии и систематике сига оз. Байкал // Тр. Байкальской лимнол. Станции. 1933. Т. 5. С. 5-148.
- Логачев Н.А., Антощенко-Оленев И.В., Базаров Д.Б., Галкин В.И., Голдырев Г.С., Ендрихинский А.С., Золотарев А.Г., Сизиков А.И., Уфимцев Г.Ф. Нагорья Прибайкалья и Забайкалья [под ред. Н.А. Флоренсова]. М.: Наука, 1974. 360 с.
- Мамонтов А.М. Гибриды сиговых рыб Байкала // Проблемы экологии Прибайкалья: Тез. Докл. К III Всесоюз. Науч. Конф. Иркутск, 1988. Ч. З. С. 127-128.
- Мамонтов А.М. Ледниковые периоды и формообразования у реликтовых сиговых рыб в водоемах юга Сибири // Матер. Междунар. Конф. «Озера холодных регионов». Якутск: Изд-во Якутского ун-та, 2000. Т. Ч. 5. С. 127-146.
- 32. Мамонтов А.М. Размножение, гибридизация и искусственное разведение байкальских сигов // Ихтиологические исследования озера Байкал и водоемов его бассейна в конце XX столетия: Сб. науч. Тр. – Иркутск, 1996. С. 41-48.
- 33. Мамонтов А.М., Яхненко В.М. Морфологическая и генетико-биохимическая дифференциация пыжьяна (*Coregonus lavaretus pidschian* Gmelin) озера Байкал // Вопросы ихтиологии. 1995. Т. 35, № 2. С. 175-181.
- 34. Мамонтов А.М., Яхненко В.М. Биохимический полиморфизм омуля // Морфология и экология рыб. Новосибирск: Наука, 1987. С. 9-19.
- Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. М.: Мир, 1984. 480 с.
- 36. Мац В.Д., Уфимцев Г.Ф., Мандельбаум М.М. Кайнозой Байкальской рифтовой впадины: строение и геологическая история. Новосибирск: Изд-во СО РАН, филиал «Гео», 2001. 252 с.

- Мац В.Д., Фуджии Ш., Машико К., Гранина Л.З., Осипов Э.Ю., Ефимова И.М., Климанский А.В. К палеогидрологии Байкала в связи с неотектоникой // Геология и геофизика. 2002. Т. 43, № 2. С. 142-154.
- Медников Б.М., Шубина Е.А., Мельникова М.Н. Сиговые рыбы: новый механизм репродуктивной изоляции // Журнал общей биологии. 2000. Т. 61, № 4. С. 393-399.
- 39. Мишарин К.И. Естественное размножение и искусственное разведение посольского омуля в Байкале. Иркутск: Иркутское изд-во, 1953. 150 с.
- 40. Мишарин К.И. Байкальский омуль // Рыбы и рыбное хозяйство в бассейне озера Байкал. Иркутск, 1958. С. 130-287.
- 41. Мишарин К.И., Тюменцев Н.В. Миграция байкальского омуля по результатам кольцевания // Изв. Биол.-геогр. Науч.-исслед. Ин-т при Иркут. Гос. Ун-те им. А. А. Жданова. 1965. Т. 18, № 1-2. С. 50-61.
- Мухомедиаров Ф.Б. Расы байкальского омуля, их морфологические и биологические особенности и роль в промысле // Изв. Биол.-геогр. Науч.исслед. Ин-та при Иркутском ун-те. 1942. Т. 9, № 3-4. С. 35-96.
- Николюкин Н.И. Межвидовая гибридизация рыб. Саратов: Саратовское обл. гос. Изд-во, 1952. 312 с.
- 44. Пармузин Ю.П. Современные рельефообразующие процессы и генезис озерных котловин // Путоранская озерная провинция. Труды Лимнологического института СО АН СССР, т. 20 (40). Новосибирск, 1975, с. 64-97.
- 45. Пирожников, П.Л. О таксономическом ранге и филогении сиговых (Coregonidae, Pisces) / П.Л. Пирожников, П.А. Дрягин, В.В. Покровский // Изв. ГосНИОРХ. 1975. Т. 104. С. 5–17.
- 46. Политов Д. В., Гордон Н. Ю. Систематический статус байкальского омуля в свете данных изоферментного анализа // Современные проблемы систематики рыб. СПб: Изд-во Зоол.ин-та РАН, 1998. С. 51.

- 47. Попов И. Ю., Сендек Д. С. Квинтессенция эволюции // Эволюционная биология: история и теория. СПб: СПбФИЕЕТ, 2003. С. 172-189.
- Решетников Ю.С. Экология и систематики сиговых рыб. М.: Наука, 1980.
 301 с.
- 49. Решетников Ю.С. Современные проблемы изучения сиговых рыб // Вопросы ихтиологии. 1995. Т. 35, № 2. С. 156-174.
- 50. Селезнев И.Н. Байкальский омуль, его естественное размножение и перспективы искусственного разведения // Изв. Биол.-геогр. Науч.-исслед. Ин-та при Иркутском ун-те. 1942. Т. 9, № 1-2. С. 24-38.
- 51. Сидорова Т. В. Смирнов В.В., Кирильчик С.В., Суханова Л.В. Изучение популяционной структуры байкальских сиговых рыб на основе полиморфизма микросателлитных локусов // Генетика. 2022. Т. 58, № 11. С. 1311–1324.
- 52. Скрябин А.Г. Биология байкальских сигов. Новосибирск: Наука, 1969. 125 с.
- 53. Скрябин А.Г. Сиговые рыбы юга Сибири. Новосибирск: Наука, 1979. 229 с.
- 54. Слободянюк С.Я., Кирильчик С.В., Мамонтов А.М., Скулин В.А. Сравнительный рестрикционный анализ митохондриальной ДНК байкальского *Coregonus lavaretus baicalensis* и баунтовского *C. Lavaretus baunti* озерных сигов // Вопросы ихтиологии. 1993. Т. 33, № 5. С. 631-636.
- 55. Смирнов В.В., Воронов М.Г., Воронов А.В. О внутривидовой структуре байкальского омуля *Coregonus autumnalis migratorius* (Georgi) // Вопросы ихтиологии. 1987а. Т. 27, № 2. С. 342-345.
- 56. Смирнов В.В., Моложников В.Н. Популяции омуля в бассейне реки Кичеры // Второе Всесоюзн. Совещ. По биологии и биотехнике разведения сиговых рыб: Тез. Докл. Петрозаводск, 1981. С. 92-93.
- 57. Смирнов В.В., Провиз Л.И., Воронов А.В. Морфо-экологическая характеристика омуля Верхнекичерских озер (бассейн Северного Байкала) // Морфология и экология рыб. Новосибирск: Наука, 19876. С. 42-48.

- 58. Смирнов В.В., Смирнова-Залуми Н.С., Суханова Л.В. Микроэволюция байкальского омуля: *Coregonus autumnalis migratorius* (Georgi) [под ред. В.Н. Большакова]. Новосибирск: Изд-во СО РАН, 2009. 246 с.
- Смирнов В.В., Шумилов И. П. Омули Байкала. Новосибирск: Наука, 1974.
 160 с.
- Смирнов В.В. Основные направления микроэволюции байкальского омуля *Coregonus autumnalis migratorius* (Georgi) // Зоологические исследования Сибири и Дальнего Востока. Владивосток, 1974. С. 145-152.
- Сорокин В.Н. Условия естественного воспроизводства омуля в Селенге // Экология, болезни и разведение байкальского омуля. Новосибирск: Наука, 1981. С. 34-44.
- 62. Стерлягова М.А., Картушин А.И. Естественное воспроизводство и перспективы искусственного разведения чивыркуйского омуля // Рыбы и рыбное хозяйство Восточной Сибири. Улан-Удэ, 1980. С. 126-137.
- 63. Суханова Л.В., Журавлев О.И., Смирнов В.В., Смирнова-Залуми Н.С., Глызина О.Ю., Кирильчик С.В. Перспективы восстановления численности байкальского озерно-речного сига и его использования // Рыбоводство и рыбное хозяйство. 2011. № 10. С. 26-28.
- 64. Суханова Л.В., Смирнов В.В., Смирнова-Залуми Н.С., Кирильчик С.В. Новые данные по рестрикционному анализу мтДНК популяций байкальского омуля *Coregonus autumnalis migratorius* (Georgi) // Сибирский экологический журнал. 1999. № 6. С. 655-658.
- 65. Суханова Л.В., Смирнов В.В., Смирнова-Залуми Н.С., Слободянюк С.Я., Скулин В.А., Бадуев Б.К. Исследование популяций байкальского омуля *Coregonus autumnalis migratorius* методом рестрикционного анализа митохондриальной ДНК // Вопросы ихтиологии. 1996. Т. 36, № 5. С. 667-673.
- 66. Талиев Д.Н. Серологический анализ рас байкальского омуля // Тр. Зоол. Инта АН СССР. 1941. Вып. 4. С. 68-91.

- 67. Турдаков Ф.А. Рыбы Киргизии. 2-е изд. Фрунзе: Изд-во АН КиргССР, 1963.
 283 с.
- 68. Тюрин П.В., Сосинович П.Н. Материалы к познанию нереста байкальского омуля в р. Кичере // Изв. Биол.-геогр. Науч.-исслед. Ин-та при Иркутском ун-те. 1937. Т. 7, № 3-4. С. 198-224.
- 69. Ушаков Б.П., Виноградова А.Н., Кусакина А.А. Цитофизиологический анализ внутривидовой дифференциации омулей и хариусов озера Байкал // Журнал общей биологии. 1962. Т. 23, № 1. С. 56-63.
- 70. Хедрик Ф. Генетика популяций. Монография // Техносфера, 2003.– 592 с
- 71. Шапошникова Г.Х. История расселения сигов рода *Coregonus* (L.) // Зоогеография и систематика рыб. Л., 1976. С. 54–68.
- 12. Шедько С.В. О скорости эволюции митохондриальной ДНК лососевых рыб // Журнал эволюционной биохимии и физиологии. 1991. Т. 27, № 2. С. 249-254.
- 73. Шулев В.В. Состояние естественного воспроизводства омуля в реке Баргузин // Экология, болезни и разведение байкальского омуля. Новосибирск: Наука, 1981. С. 75-82.
- 74. Черняев Ж.А. Воспроизводство байкальского омуля. М.: Легкая и пищевая промышленность, 1982. 128 с.
- 75. Черняев Ж.А., Коваленко В.И., Кружалина Е.И., Овчинникова Т.И., Дмитриев И.Л. Методические указания по сбору и хранению икры сиговых рыб на временных рыбоводных пунктах, ее транспортировке и инкубации. М.: ИЭМЭЖ, 1987. 82 с.
- 76. Яхненко В.М., Клименков И.В., Судаков Н.П., Белышенко А.Ю., Глызина О.Ю., Мамонтов А.М., Сапожникова Ю.П., Суханова Л.В. Морфофункциональные особенности эритроцитов природных и искусственно выращенных сиговых рыб озера Байкал // Сибирский экологический журнал. 2016. Т. 23, № 2. С. 256-266.

- 77. Яхненко В.М., Мамонтов А.М. Генетико-биохимический анализ гибридов омуля *Coregonus autumnalis migratorius* и озерно-речного сига *C. lavaretus pidschian* озера Байкал // Вопросы ихтиологии. 2006. Т. 46, № 4. С. 495-502.
- 78. Яхненко В.М., Осинов А.Г., Мамонтов А.М. Морфологическая и популяционно-генетическая дифференциация байкальского озерного сига *Coregonus lavaretus baicalensis* Dybowski // Генетика. 1992. Т. 28, №7. С. 139-150.
- Alberdi A., Aizpurua O., Bohmann K., Zepeda-Mendoza M.L., Gilbert T.P. Do vertebrate gut metagenomes confer rapid ecological adaptation? // Trends in Ecology & Evolution. 2016. V. 31. P. 689-699.
- Asakura T., Sakata K., Yoshida S., Date Y., Kikuchi J. Noninvasive analysis of metabolic changes following nutrient input into diverse fish species, as investigated by metabolic and microbial profiling approaches // PeerJ. 2014. V. 2. P. E550.
- Babin C., Gagnaire P.-A., Pavey S., Bernatchez L. RAD-Seq reveals Patterns of additive polygenic variation caused by spatially-varying selection in the American Eel (*Anguilla rostrata*) // Genome Biology and Evolution. 2017. V. 9, № 11. P. 2974-2986.
- Baldina S.N, Gordon N.Yu., Politov D.V. Genetic relationships of the Ussuri Cisco, *Coregonus ussuriensis* Berg 1906, in view of mtDNA data // Archives Hydrobiology. Special Issues Advanced Limnology. 2007. V. 60. P. 21-34.
- Baldo L., Pretus J.L., Riera J.L., Musilova Z., Nyom A.E.B., Salzburger W. Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes // The ISME Journal. 2017. V. 11. P. 1975-1987.
- Baldo L., Riera J.L., Tooming-Klunderud A., Albà M.M., Salzburger W. Gut microbiota dynamics during dietary shift in eastern African Cichlid Fishes // PloS ONE. 2015. V. 10. P. E0127462.

- 85. Barr I.D., Clark C.D. Glaciers and Climate in Pacific Far NE Russia during the Last Glacial Maximum // Journal of Quaternary Science. 2011. V. 26, № 2. P. 227-237.
- Barrett R.D.H., Schluter D. Adaptation from standing genetic variation // Trends in Ecology & Evolution. 2008. V. 23. P. 38-44.
- 87. Bay R., Rose N., Logan C., Palumbi1 S. Genomic models predict successful coral adaptation if future ocean warming rates are reduced // Science Advances. 2017. V.
 3, № 11. P. e1701413.
- Belkova N.L., Sidorova T.V., Glyzina O.Y., Yakchnenko V.M., Sapozhnikova Y.P., Bukin Y.S., Baturina O.A., Sukhanova L.V. Gut microbiome of juvenile coregonid fishes:comparison of sympatric species and their F1 hybrids // Fundam. Appl. Limnol. 2017. V. 189, № 3. P. 279-290.
- Bernatchez L., Chouinard A., Lu G. Integrating molecular genetics and ecology in studies of adaptive radiation: whitefish, *Coregonus* sp., as a case study // Biol. J. Linn. Soc. 1999. V. 68. P. 173-194.
- 90. Bernatchez L., Dodson J.J. Allopatric origin of sympatric populations of lake whitefish (*Coregonus clupeaformis*) as revealed by mitochondrial-DNA restriction analysis // Evolution. 1990. V. 44, № 5. P. 1263-1271.
- 91. Bernatchez L., Dodson J.J. Phylogenetic relationships among Palearctic and Nearctic Whitefish (*Coregonus* sp.) populations as revealed by mitochondrial DNA variation // Canadian Journal Fish Aquatic Science. 1994. V. 51. P. 240-251.
- 92. Bernatchez L., Renaut S., Whitele A.R., Derome N., Jeukens J., Landry L., Lu G., Nolte A.W., Østbye K., Rogers S.M., St-Cyr J. On the origin of species: insights I ecological genomics of lakewhitefish // Philosophical Transactions of the Royal Society B. 2010. V. 365, № 1547. P. 1783-1800.
- Bernatchez L., Vuorinen J.A., Bodaly R.A., Dodson J.J. Genetic evidence for reproductive isolation and multiple origins of sympatric trophic ecotypes of whitefish (*Coregonus*) // Evolution. 1996. V. 50. P. 624-635.

- Bernatchez L., Colombani F., Dodson J.J. Phylogenetic relationships among the subfamily Coregoninae as revealed by mitochondrial DNA restriction analysis // J. of Fish Biology. 1991. V. 39. P. 283-290.
- 95. Bernatchez L., Guyomard R., Bonhomme F. Sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout (*Salmo trutta* L.) populations // Mol. Ecol. 1992. V. 1. P. 161-173.
- 96. Bochkarev N.A., Zuykova E.I., Abramov S.A., Katokhin A.V. Matveev A. A., Samusenok V.P., Baldina S.N., Gordon N.Y., Politov D.V. Morphological, biological and mtDNA sequences variation of coregonid species from the Baunt Lake system (the Vitim River basin) // Adv. Limnol. 2013. V. 64. P. 257-277.
- 97. Bochkarev N.A., Zuykova E.I., Katokhin A.V. Morphology and mitochondrial DNA variation of the Siberian whitefish *Coregonus lavaretus pidschian* (Gmelin) in the upstream water bodies of the Ob and Yenisei rivers // Evol. Ecol. 2011. V. 25. P. 557-572.
- Bodaly R.A., Clayton J.W., Lindsey C.C., Vuorinen J. Evolution of lake whitefish (*Coregonus clupeaformis*) in North America during the Pleistocene: genetic differentiation between sympatric populations // Can. J. Fish. Aquat. Sci. 1992. V. 49. P. 769-779.
- 99. Boratyn G.M., Thierry-Mieg J., Thierry-Mieg D., Busby B., Madden T.L. Magic-BLAST, an accurate RNA-seq aligner for long and short reads // BMC Bioinformatics. 2019. V. 20, № 1. P. 405.
- 100. Boutin S., Bernatchez L., Audet C., Derôme N. Network analysis highlights complex interactions between pathogen, host and commensal microbiota // PLoS ONE. 2013. V. 8. P. e84772.
- 101. Boutin S., Sauvage C., Bernatchez L., Audet C., Derome N. Inter individual variations of the fish skin microbiota: host genetics basis of mutualism? // PLoS One. 2014. V. 9, № 7. P. e102649.

- 102. Brookfield J.F.Y. A simple new method for estimating null allele frequency from heterozygote deficiency // Molecular Ecology. 1996. V. 5. P. 453-455.
- 103. Brucker R.M., Bordenstein S.R. Speciation by symbiosis // Trends in Ecology & Evolution. 2012. V. 27. P. 443-451.
- 104. Brzuzan P., Yakhnenko V.M., Mamontov A.M., Markovska A., Trofimova I.N. Mitochondrial DNA variation in whitefish *Coregonus lavaretus* from Lake Baikal as revealed by restriction analysis // Archives Hydrobiology. Special Issues Advanced Limnology. 1998. V. 50. P. 357-362.
- 105. Bychenko O.S., Sukhanova L.V., Azhikina T.L., Skvortsov T.A., Belomestnykh T.V., Sverdlov E.D. Differences in brain transcriptomes of closely related Baikal coregonid species // Biomed. Res. Int. 2014. V. 2014. P. 857329.
- 106. Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Lozupone C.A., Turnbaugh P.J., Fierer N., Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 4516-4522.
- 107. Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Huntley J., Fierer N., Owens S.M, Betley J., Fraser L., Bauer M., Gormley N., Gilbert J.A., Smith G., Knight R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms // ISME J. 2012. V. 6, № 8. P. 1621-1624.
- 108. Caporaso J.G, Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Pena A.G., Goodrich J.K., Gordon J.I., Huttley G.A., Kelley S.T., Knights D., Koenig J.E., Ley R.E., Lozupone C.A., McDonald D., Muegge B.D., Pirrung M., Reeder J., Sevinsky J.R., Turnbaugh P.J., Walters W.A., Widmann J., Yatsunenko T., Zaneveld J., Knight R. QIIME allows analysis of high-throughput community sequencing data // Nat. Methods. 2010. V. 7. P. 335-336.
- 109. Carda-Diéguez M., Mira A., Fouz B. Pyrosequencing survey of intestinal microbiota diversity in cultured sea bass (*Dicentrarchus labrax*) fed functional diets // FEMS Microbiol. Ecol. 2014. V. 87, № 2. P. 451-459.

- 110. Charlesworth B., Nordborg M., Charlesworth D. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations // Genetical Research. 1997. V. 70. P. 155-174.
- 111. Claiborne J.B. Acid-base regulation [In: The Physiology of Fi^{sh}es, 2nd ed.; Ed. D.H. Evans]. 1998. P. 177-198.
- 112. Clements K.D., Angert E.R., Montgomery W.L., Choat J.H. Intestinal microbiota in fishes: What's known and what's not // Molecular Ecology. 2014. V. 23. P. 1891-1898.
- 113. Cockerham C.C. Analyses of gene frequenscies // Genetics. 1973. V. 74. P. 679-700.
- 114. Cohen A., Dibbs M. Stress evolution analysis in postforming cooling // Journal of Applied Polymer science. 1989. V. 37, № 6. P. 1541-1550.
- 115. Conte G., Arnegard M., Peichel C., Schluter D. The probability of genetic parallelism and convergence in natural populations // Proc. R. Soc. B. 2012. V. 279. P. 5039-5047.
- 116. Dalziel A.C., Laporte M., Rougeux C., Guderley H., Bernatchez L. Convergence in organ size but not energy metabolism enzyme activities among wild Lake Whitefish (*Coregonus clupeaformis*) species pairs // Mol. Ecol. 2017. V. 26, № 1. P. 225-244.
- 117. Dalziel A.C., Martin N., Laporte M., Guderley H., Bernatchez L. Adaptation and acclimation of aerobic exercise physiology in Lake Whitefish ecotypes (*Coregonus clupeaformis*) // Evolution. 2015. V. 69, № 8. P. 2167-2186.
- Damodaram K., Ayyasamy A., Kempraj V. Commensal bacteria aid mate selection in the Fruit Fly, *Bactrocera dorsalis* // Microbial Ecology. 2016. V. 72. P. 725-729.
- 119. Deagle B.E., Jones F.C., Chan Y.F., Absher D.M., Kingsley D.M., Reimchen T.E. Population genomics of parallel phenotypic evolution in stickleback across stream

 lake ecological transitions // Proceedings of the Royal Society B: Biological Sciences. 2012. V. 279. P. 1277-1286.

- 120. Derome N., Duchesn P., Bernatchez L. Parallelism in gene transcription among sympatric lake whitefish (*Coregonus clupeaformis* Mitchill) ecotypes // Molecular Ecology. 2006. V. 15, № 5. P. 1239-1249.
- 121. Derome N., Whiteley A.R., Rogers S.M., St-Cyr J., Laroche J., Labbe A., Nolte A., Renaut S., Jeukens J., Bernatchez L. The phenomics and expression quantitative trait locus mapping of brain transcriptomes regulating adaptive divergence in lake whitefish species pairs (*Coregonus* sp.) // Genetics. 2008. V. 180, № 1. P. 147-164.
- 122. Douglas M.R., Brunner P.C., Bernatchez L. Do assemblages of *Coregonus* (Teleostei: Salmoniformes) in the Central Alpine region of Europe represent species flocks? // Mol. Ecol. 1999. V. 8. P. 589-604.
- 123. Earl D.A., van Holdt B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method // Conservat. Genet. Resources. 2012. V. 4. № 2. P. 359-361.
- 124. Endler J. A. Natural selection in the wild. Princeton, NJ: Princeton University Press, 1986. 336 p.
- 125. Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study // Mol. Ecol. 2005. V. 14. № 8. P. 2611-2620.
- 126. Evans M.L., Bernatchez L. Oxidative phosphorylation gene transcription in whitefish species pairs reveals patterns of parallel and non-parallel physiological divergence // J. Evol. Biol. 2012. V. 25. P. 1823-1834.
- 127. Evans M.L., Chapman L.J., Mitrofanov I., Bernatchez L. Variable extent of parallelism in respiratory, circulatory, and neurological traits across lake whitefish species pairs // Ecol. Evol. 2013. V. 3. P. 546-557.

- 128. Excoffier L., Lischer H.E.L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows // Molecular Ecology Resources. 2010. V. 10(3). P. 564-567.
- 129. Gagnaire P.A., Gaggiotti O.E. Detecting polygenic selection in marine populations by combining population genomics and quantitative genetics approaches // Current Zoology. 2016. V. 62, № 6. P. 603-616.
- 130. Gagnaire P.A., Pavey S.A., Normandeau E., Bernatchez L. The genetic architecture of reproductive isolation during speciation-with-gene-flow in lake whitefish species pairs assessed by RAD sequencing // Evolution. 2013. V. 67, № 9. P. 2483-2497.
- 131. Gaikalov I.V., Ilyna O.V., Kirilchik S.V., Sukhanova L.V. Description of tree microsatellite loci of the Baikal omul *Coregonus migratorius* (Georgi) // Russian Journal of Genetics. 2008. V. 44, № 3. P. 365-368.
- Garrity G.M. The Gammaproteobacteria. V 2B. 2nd ed. Springer, New York, 2005.
 - 133. Garza J.C., Williamson E.G. Detection of reduction in population size using data from microsatellite loci // Mol Ecol. 2001. V. 10(2). P. 305-318.
 - 134. Geiger A., Fardeau M.L., Falsen E., Ollivier B., Cuny G. Serratia glossinae sp. nov., isolated from the midgut of the tsetse fly Glossina palpalis gambiensis // Int. J. Syst. Evol. Microbiol. 2010. V. 60, № 6. P. 1261-1265
 - 135. Götz S., Garcia-Gomez J.M., Terol J., Williams T.D., Nagaraj S.H., Nueda M.J., Robles M., Talon M., Dopazo J., Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite // Nucleic Acids Res. 2008. V. 36(10). P. 3420-3435.
- 136. Goetz F., Rosauer D., Sitar S., Goetz G., Simchick C, Roberts S., Johnson R., Murphy C., Bronte C.R., Mackenzie S. A genetic basis for the phenotypic differentiation between siscowet and lean lake trout (*Salvelinus namaycush*) // Molecular Ecology. 2010. V. 19. P. 176-196.

- 137. Gordon N.Y., Politov D.V., Baldina S.N., Borovikova E.A., Yakhnenko V. M., Mamontov A.M. Phylogenetic relationships among coregonine fishes of Lake Baikal in view of molecular genetic data // Proceeding of the fourth Vereschagin Baikal Conference. Irkutsk, 2005. P. 48-49.
- 138. Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N., di Palma F., Birren B.W., Nusbaum C., Lindblad-Toh K., Friedman N., Regev A. Full-length transcriptome assembly from RNA-seq data without a reference genome // Nat. Biotechnol. 2011. V. 29(7). P. 644-652.
- 139. Grimont P.A.D., Grimont F., Starr M.P. Serratia ficaria sp. nov., a bacterial species associated with Smyrna figs and the fig wasp Blastophaga psenes // Curr Microbiol. 1979. V. 2. P. 277-282.
- 140. Guindon S., Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood // Systematic Biology. 2003. V. 52, № 5. P. 696-704.
- 141. Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B., Eccles D., Li B., Lieber M., Macmanes M.D., Ott M., Orvis J., Pochet N., Strozzi F., Weeks N., Westerman R., William T., Dewey C.N., Henschel R., Leduc R.D., Friedman N., Regev A. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis // Nat. Protoc. 2013. V. 8(8). P. 1494-1512.
- 142. Han F., Lamichhaney S., Grant B.R., Grant P.R., Andersson L., Webster M.T. Gene flow, ancient polymorphism, and ecological adaptation shape the genomic landscape of divergence among Darwin's finches // Genome Research. 2017. V. 27. P. 1004-1015.
- 143. Harrison R.G. The language of speciation // Evolution, 2012. V. 66, № 12. P. 3643-3657.

- 144. Harrison T.L., Wood C.W., Heath K.D., Stinchcombe J.R. Geographically structured genetic variation in the *Medicago lupulina* - Ensifer mutualism // Evolution. 2017. V. 71, № 7. P. 1787-1801.
- 145. Hasegawa M., Kishino H., Yano T. Dating the human-ape split by a molecular clock of mitochondrial DNA // Journal of Molecular Evolution. 1985. V. 22. P. 160-174.
- 146. Hata H., Tanabe A.S., Yamamoto S., Toju H., Kohda M., Hori M. Diet disparity among sympatric herbivorous cichlids in the same ecomorphs in Lake Tanganyika: amplicon pyrosequences on algal farms and stomach contents // BMC Biology. 2014. V. 12. P. 90.
- 147. Hebert F.O., Renaut S., Bernatchez L. Targeted sequence capture and resequencing implies a predominant role of regulatory regions in the divergence of a sympatric lake whitefish species pair (*Coregonus clupeaformis*) // Mol. Ecol. 2013. V. 22, № 19. P. 4896-4914.
- 148. Himberg K.-J. M. A systematic and zoogeographic study of some North European Coregonids [In: Biology of Coregonid Fishes; Eds C.C. Lindsey, C.S.Woods]. University of Manitoba Press. Winnipeg, Canada, 1970. P. 219-250.
- 149. Huang K., Ritland K., Dunn D.W., Qi X., Guo S., Li B. Estimating relatedness in the presence of null alleles // Genetics. 2016. V. 202(1). P. 247-260.
- 150. Irwin D.M., Kocher T.D., Wilson A.C. Evolution of the cytochrome b gene of mammals // Journal of Molecular Evolution. 1991. V. 32, № 2. P. 128-144.
- 151. Jain K., Stephan W. Rapid adaptation of a polygenic trait after a sudden environmental shift // Genetics. 2017. V. 206, № 1. P. 389-406.
- 152. Jeukens J., Boyle B., Kukavica-Ibrulj I., St-Cyr J., Lévesque R.C., Bernatchez L. BAC library construction, screening and clone sequencing of lake whitefish (*Coregonus clupeaformis*, Salmonidae) towards the elucidation of adaptive species divergence // Mol. Ecol. Resour. 2011. V. 11, № 3. P. 541-549.
- 153. Jeukens J., Renaut S., St-Cyr J., Nolte A.W., L Bernatchez. The transcriptomics of sympatric dwarf and normal lake whitefish (*Coregonus clupeaformis* spp.,

Salmonidae) divergence as revealed by next-generation sequencing // Molecular Ecology. 2010. V. 19. P. 5389-5403.

- 154. Jeukens J., Bittner D., Knudsen R., Bernatchez L. Candidate genes and adaptive radiation: Insights from transcriptional adaptation to the limnetic niche among coregonine fishes (*Coregonus* spp., Salmonidae) // Molecular Biology and Evolution. 2009. V. 26, № 1. P. 155-166.
- 155. Jones F., Grabherr M., Chan Y., Russell P., Mauceli E. et al. The genomic basis of adaptive evolution in threespine sticklebacks // Nature. 2012. V. 484. P. 55-61.
- 156. Joshi N.A., Fass J.N. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. 2011. Available at https://github.com/najoshi/sickle.
- 157. Kormas K.A., Meziti A., Mente E., Frentzos A. Dietary differences are reflected on the gut prokaryotic community structure of wild and commercially reared sea bream (*Sparus aurata*) // Microbiologyopen. 2014. V. 3, № 5. P. 718-728.
- 158. Kottelat M. European freshwater fishes. An heuristic checklist of the freshwater fishes of Europe (exclusive of former USSR), with an introduction for nonsystematists and comments on nomenclature and conservation // Biologia (Bratislava) Sect. Zool. 1997. V. 52. 271 p.
- Kottelat M., Freyhof J. Handbook of European Freshwater Fishes. Cornol, CH: Publications Kottelat, 2007. 646 p.
- 160. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets // Mol Biol Evol. 2016. V. 33(7). P. 1870-1874.
- Langmead B., Salzberg S. Fast gapped-read alignment with Bowtie 2 // Nat. Methods. 2012. V. 9. P. 357-359.
- 162. Landry L., Bernatchez L. Role of epibenthic resource opportunities in the parallel evolution of Lake Whitefish species pairs (*Coregonus* sp.) // Journal of Evolutionary Biology. 2010. V. 23 P. 2602-2613.

- 163. Laporte M., Dalziel A.C., Martin N., Bernatchez L. Adaptation and acclimation of traits associated with swimming capacity in Lake Whitefish (*Coregonus clupeaformis*) ecotypes // BMC Evol. Biol. 2016. V. 16. P. 13.
- 164. Laporte M., Rogers S.M., Dion-Côté A.-M., Normandeau E., Gagnaire P.-A., Dalziel A.C., Chebib J., Bernatchez L. RAD QTL mapping reveals both –enome level parallelism and different genetic architecture underlying the evolution of body shape in Lake Whitefish (*Coregonus clupeaformis*) species pairs // G3 (Bethesda). 2015. V. 5. P. 1481-1491.
- 165. Larsen A., Tao Z., Bullard S.A., Arias C.R. Diversity of the skin microbiota of fishes: evidence for host species specificity // FEMS Microbiol. Ecol. 2013. V. 85, N

 oliveral N

 oliv
- 166. Larsen A.M., Mohammed H.H., Arias C.R. Characterization of the gut microbiota of three commercially valuable warmwater fish species // J. Appl. Microbiol. 2014. V. 116, № 6. P. 1396-1404.
- 167. Le Corre V., Kremer A. The genetic differentiation at quantitative trait loci under local adaptation // Molecular Ecology. 2012. V. 21. P. 1548-1566.
- 168. Le Moan A., Gagnaire P. A., Bonhomme F. Parallel genetic divergence among coastal - marine ecotype pairs of European anchovy explained by differential introgression after secondary contact // Molecular Ecology. 2016. V. 25. P. 3187-3202.
- 169. Li X.M., Zhu Y.J., Yan Q.Y., Ringø E., Yang D.G. Do the intestinal microbiotas differ between paddlefish (*Polyodon spathala*) and bighead carp (*Aristichthys nobilis*) reared in the same pond? // J. Appl. Microbiol. 2014. V. 117, № 5. P. 1245-1252.
- 170. Losos J. B. Convergence, adaptation, and constraint // Evolution. 2011. V. 65. P. 1827-1840.
- 171. Lu G., Basley D.J., Bernatchez L. Contrasting patterns of mitochondrial DNA and microsatellite introgressive hybridization between lineages of lake whitefish

(*Coregonus clupeaformis*); relevance for speciation // Mol. Ecol. 2001. V. 10, № 4. P. 965-985.

- 172. Lu G., Bernatchez L. Experimental evidence for reduced hybrid viability between dwarf and normal ecotypes of lake whitefish (*Coregonus clupeaformis* Mitchill) // Proceedings of the Royal Society B: Biological Sciences. 1998. V. 265. P. 1400.
- 173. Ma T., Wang K., Hu Q., Xi Z., Wan D., Wang Q., Feng J., Jiang D., Ahani H., Abbott R.,Lascoux M., Nevo E., Liu J. Ancient polymorphisms and divergence hitchhiking contribute to genomic islands of divergence within a poplar species complex // Proceedings of the National Academy of Sciences of the USA. 2017. V. 5. P. 201713288-201713298.
- 174. Macke E., Callens M., De Meester L., Decaestecker E. Host-genotype dependent gut microbiota drives zooplankton tolerance to toxic cyanobacteria // Nature communications. 2017. V. 8. P. 1608.
- 175. Mamontov A.M., Yakhnenko V.M. Ecological, morphological and iso-enzyme differentiation of coregonid populations in Lake Baikal // Arch. Hydrobiol. / Spec. Issues Advanc. Limnol. 1995. V. 46. P. 13-23.
- 176. Mamontov A.M., Yakhnenko V.M. Izoenzyme polymorphizm in Lake Baikal omul (*Coregonus autumnalis migratorius* Georgi) // Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 1998. № 50. P. 375–381.
- 177. Manceau M., Domingues V., Linnen C., Rosenblum E., Hoekstra H. Convergence in pigmentation at multiple levels: mutations, genes and function // Philos. Trans.
 R. Soc. Lond. B Biol. Sci. 2010. V. 365, № 1552. P. 2439-2450.
- 178. Manceau M., Domingues V.S., Mallarino R., Hoekstra H.E. 2011. The developmental role of Agouti in color pattern evolution // Science. 2011. V. 331, № 6020. P. 1062-1065.
- 179. Manousaki T., Koutsouveli V., Lagnel J., Kollias S., Tsigenopoulos C.S., Arvanitidis C., Magoulas A., Dounas C., Dailianis T.A. De novo transcriptome

assembly for the bath sponge *Spongia officinalis*, adjusting for microsymbionts // BMC Res Notes. 2019. V. 12, № 813. P. 1-3.

- 180. McCarthy D.J., Chen Y., Smyth G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation // Nucleic Acids Research. 2012. V. 40(10). P. 4288-4297.
- 181. McMurdie P.J., Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data // PLoS One. 2013. V. 8, № 4. P. e61217.
- 182. Meier J.I., Marques D.A., Wagner C.E., Excoffier L., Seehausen O. Genomics of parallel ecological speciation in Lake Victoria cichlids. Molecular Biology and Evolution. 2018. V. 35, № 6. P. 1489-1506.
- 183. Meier J., Sousa V.C., Marques D., Selz O., Wagner C., Excoffier L., Seehausen O. Demographic modeling with whole genome data reveals parallel origin of similar *Pundamilia* cichlid species after hybridization // Mol. Ecol. 2017. V. 26. P. 123-141.
- 184. Merritt C., Rasoloson D., Ko D., Seydoux G. 3' UTRs are the primary regulators of gene expression in the *C. elegans* germline // Current Biology. 2008. V. 18. P. 1476-1482.
- 185. Nei M., Tajima F., Tateno Y. Accuracy of estimatedphylogenetic trees from molecular data // J. Mol. Evol. 1983. V. 19. P. 153-170.
- 186. Nelson T., Cresko W. Ancient genomic variation underlies repeated ecological adaptation in young stickleback populations // Evolution Letters. 2018. V. 2, № 1. P. 9-21.
- 187. van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P. Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data // Mol. Ecol. Notes. 2004. V. 4. P. 535-538.
- Orr H. A. The probability of parallel evolution // Evolution. 2005. V. 59. P. 216-220.

- 189. Østbye K., Amundsen P.A., Bernatchez L., Klemetsen Knudsen A., R., Kristoffersen R., Naesje T.F., Hindar Κ. Parallel evolution of ecomorphological traits in the European whitefish Coregonus lavaretus (L.) species complex during postglacial times // Mol. Ecol. 2006. V. 15, № 13. P. 3983-4001.
- 190. Østbye K., Bernatchez L., Naesje T. F., Himberg K.-J.M. Evolutionary history of the European whitefish *Coregonus lavaretus* (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers // Molecular Ecology. 2005. V. 14. P. 4371-4387.
- 191. Patro R., Duggal G., Love M., Irizarry R., Kingsford C. Salmon: fast and biasaware quantification of transcript expression using dual-phase inference // Nat. Methods. 2017. V. 14(4). P. 417-419.
- 192. Patton G.C., Harris R., Carlin J.B., Hibbert M.E., Coffey C., Schwartz M., Bowes G. Adolescent suicidal behaviours: A population-based study of risk // Psychological Medicine. 1997. V. 27. P. 715-724.
- 193. Pavey S., Nielsen J., Hamon T. Recent ecological divergence despite migration in sockeye salmon (*Oncorhynchus nerka*) // Evolution. 2010. V. 64, № 6. P. 1773-1783.
- 194. Piatigorsky J. Crystallin genes: specialization by changes in gene regulation may precede gene duplication // J. Struct. Funct. Genomics. 2003. V. 3. P. 131-137.
- 195. Pigeon D., Chouinard A., Bernatchez L. Multiple modes of speciation involved in the parallel evolution of sympatric dwarf and normal morphotypes of lake whitefish (*Coregonus clupeaformis*, Salmonidae) // Evolution. 1997. V. 51. P. 196-205.
- 196. Politov D.V., Bickham J.W., Patton J.C. Molecular phylogeography of Palearctic and Nearctic ciscoes // Annales Zoologici Fennici. 2004. V. 41, № 1. P. 13-23.
- 197. Politov D.V., Gordon N.Y., Makhrov, A.A. Genetic identification and taxonomic relationships of six Siberian species of *Coregonus* // Archives Hydrobiology. Special Issues Advanced Limnology. 2002. V. 57. P. 21-34.

- 198. Politov D.V., Gordon N.Y., Afanasiev K.A., Altukhov Yu.P., Bickham J. W. Identification of palearctic coregonid fish species using mtDNA and allozyme genetic markers // Journal of Fish Biology. 2000. V. 57. P. 51-71.
- 199. Politov D.V. Coregonids of Russia: evolutionary genetic approach in assessment of the current state of biodiversity // Fundam. Appl. Limnol. 2017. V. 189, № 3. P. 181-192.
- 200. Posada D., Crandal K.A. MODELTEST: testing the model of DNA substitution // Bioinformatics. 1998. V. 14, № 9. P. 484-487.
- 201. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data // Genetics. 2000. V. 155. № 2. P. 945-959.
- 202. Rall J.A. Role of parvalbumin in skeletal muscle relaxation // News Physiol. Sci. 1996. V. 11. P. 249-255.
- 203. Ravinet M., Westram A., Johannesson K., Butlin R., André C., Panova M. Shared and nonshared genomic divergence in parallel ecotypes of *Littorina saxatilis* at a local scale // Molecular Ecology. 2015. V. 25. P. 287-305.
- 204. Rawls J.F., Samuel B.S., Gordon J.I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota // Proceedings of the National Academy of Sciences of the USA. 2004. V. 101. P. 4596-4601.
- 205. Rebeiz M., Pool J., Kassner V., Aquadro C., Carroll S. Stepwise modification of a modular enhancer underlies adaptation in a *Drosophila* population // Science.
 2009. V. 326, № 5960. P. 1663-1667.
- 206. Renaut S., Nolte A.W., Bernatchez L. Mining transcriptome sequences towards identifying adaptive single nucleotide polymorphisms in lake whitefish species pairs (*Coregonus* spp. Salmonidae) // Molecular Ecology. 2010 V. 19. P. 115-131.
- 207. Roesti M., Gavrilets S., Hendry A., Salzburger W., Berner D. The genomic signature of parallel adaptation from shared genetic variation // Mol. Ecol. 2014.
 V. 23, № 16. P. 3944-3956.

- 208. Rogers S.M., Gagnon V., Bernatchez L. Genetically based phenotype-environment association for swimming behavior in Lake whitefish ecotypes (*Coregonus clupeaformis* Mitchill) // Evolution. 2002. V. 56. P. 2322-2329.
- 209. Rogers S.M., Isabel N., Bernatchez L. Linkage maps of the dwarf and normal lake white fish (*Coregonus clupeaformis*) species complex and their hybrids reveal the genetic architecture of population divergence // Genetics. 2007. V. 175, № 1. P. 375-398.
- 210. Rosenberg E., Zilber I. Microbes drive evolution of animals and plants: the hologenome concept // MBio. 2016. V. 7. P. e01395-e1415.
- 211. Rougeux C., Gagnaire P.-A., Praebel K., Seehausen O., Bernatchez L. Polygenic selection drives the evolution of convergent transcriptomic landscapes across continents within a Nearctic sister species complex // Molecular Ecology. 2019. V. 28, № 19. P. 4388-4403.
- 212. Rougeux C., Bernatchez L., Gagnaire P.-A. Modeling the multiple facets of speciation-with-gene-flow toward inferring the divergence history of lake whitefish species pairs (*Coregonus clupeaformis*) // Genome Biology and Evolution. 2017. V. 9, № 8. P. 2057-2074.
- 213. Sambrook J. Fitch E.P., Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratories, Cold Spring Harbor, NY. 1989.
- 214. Sapozhnikova Y.P., Belous A.A., Makarov M.M., Glyzina O. Y., Klimenkov I.V., Yakhnenko V.M., Sukhanova L.V. Ultrastructural correlates of acoustic sensitivity in Baikal coregonid fishes // Fundam. Appl. Limnol. 2017. V. 189, № 3. P. 267-278.
- 215. Schliep K. P. Phangorn: phylogenetic analysis in R // Bioinformatics. 2011. V. 27.P. 592-593.
- 216. Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A., Oakley B.B., Parks D.H., Robinson C.J., Sahl J.W., Stres, B., Thallinger, G. G., Van Horn, D. J., Weber C. F. Introducing mothur: open-source, platform-independent, community-supported software for describing and

comparing microbial communities // Appl. Environ. Microbiol. 2009. V. 75. P. 7537-7541.

- 217. Schrider D.R., Kern A.D. Soft sweeps are the dominant mode of adaptation in the human genome // Molecular Biology and Evolution. 2017. V. 34, № 8. P. 1863-1877.
- 218. Shropshire J.D., Bordenstein S.R. Speciation by symbiosis: the microbiome and behavior // mBio. 2016. V. 7, № 2. P. e01785-e01815.
- 219. Semenova A., Stroganov A., Afanasiev K., Rubtsova G. Population structure and variability of Pacific herring (*Clupea pallasii*) in the White Sea, Barents and Kara seas re vealed by microsatellite DNA analyses // Polar Biol. 2015. V. 38. № 7. P. 951-965.
- 220. Sevellec M., Derome N., Bernatchez L. Holobionts and ecological speciation: the intestinal microbiota of Lake Whitefish species pairs // Microbiome. 2018. V. 6. P. 47.
- 221. Sevellec M., Laporte M., Bernatchez A., Derome N., Bernatchez L. Evidence for host effect on the intestinal microbiota of whitefish (*Coregonus* sp.) species pairs and their hybrids // Ecology and Evolution. 2019. V. 9. P. 11762-11774.
- 222. Sevellec M., Pavey S.A., Boutin S., Filteau M., Derome N., Bernatchez L. Microbiome investigation in the ecological speciation context of Lake Whitefish (*Coregonus clupeaformis*) using next - generation sequencing. Journal of Evolutionary Biology. 2014. V. 27. P. 1029.
- 223. Skrodenyte-Arbaciauskiene V., Sruoga A., Butkauskas D., Skrupskelis K. Phylogenetic analysis of intestinal bacteria of freshwater salmon *Salmo salar* and sea trout *Salmo trutta trutta* and diet // Fisheries Science. 2008. V. 74, № 6. P. 1307-1314.
- 224. Slatkin M., Charlesworth D. The spatial distribution of transient alleles in a subdivided population: a simulation study // Genetics. 1978. V. 89, № 4. P. 793-810.

- 225. Smith C., Snowberg L.K., Caporaso J.G., Knight R., Bolnick D.I. Dietary input of microbes and host genetic variation shape among - population differences in stickleback gut microbiota // The ISME Journal. 2015. V. 9. P. 2515-2526.
- 226. Smith G.R. Introgression in fishes: significance for paleontology, cladistics and evolutionary rates // Systematic Biology. 1992. V. 41, № 1. P. 41-57.
- 227. Smith-Unna R.D., Boursnell C., Patro R., Hibberd J.M., Kelly S. TransRate: reference-free quality assessment of de novo transcriptome assemblies // Genome Res. 2016. V. 26(8). P. 1134-1144.
- 228. Smirnov V.V. Intraspecific structure of Baikal omul *Coregonus autumnalis migratorius* (Georgi) // Pol. Arch. Hidrobiol. 1992. P. 325-333.
- 229. Smriga S., Sandin S.A., Azam F. Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and feces // FEMS Microbiol. Ecol. 2010. V. 73, № 1. P. 31-42.
- 230. St-Cyr J., Derom N., Bernatchez L. The transcriptomics of life-history trade-offs in whitefish species pairs (*Coregonus* sp.) // Molecular Ecology. 2008. V.17, № 7. P. 1850-1870.
- 231. Sukhanova L.V., Smirnov V.V., Smirnova-Zalumi N.S., Belomestnykh T.V., Kirilchik S.V. Molecular phylogeography of Lake Baikal Coregonid fishes // Advanc. Limnol. 2012. V. 63. P. 261-283.
- 232. Sukhanova L.V., Smirnov V.V., Kirilchik S.V., Shimuzu I. Grouping of Baikal omul *Coregonus autumnalis migratorius* (Georgi) within the *C. lavaretus* complex confirmed by using a nuclear DNA marker // Annales Zoologici Fennici. 2004. V. 41, № 1. P. 41-49.
- 233. Sukhanova L.V., Smirnov V.V., Smirnova-Zalumi N.S., Kirilchik S.V. The phylogenetic relationships of Lake Baikal coregonines as revealed by mitochondrial DNA d-loop analysis // Proceeding of International Conference "Biodiversity and dynamics of ecosystems in North Eurasia". Novosibirsk, 2000. V. 5, № 2. P. 199-201.

- 234. Sukhanova L.V., Smirnov V.V., Smirnova-Zalumi N. S., Kirilchik S.V., Griffiths D., Belikov S. I. The taxonomic position of the Lake Baikal omul *Coregonus autumnalis migratorius* (Georgi), as revealed by sequence analysis of the mtDNA cytochrome b gene and control region // Archives Hydrobiology. Special Issues Advanced Limnology. 2002. V. 57. P. 97-106.
- 235. Sullam K.E., Essinger S.D., Lozupone C.A., O'Connor M.P., Rosen G.L., Knight R., Kilham S.S., Russell J.A. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis // Mol. Ecol. 2012. V. 21, № 13. P. 3363-3378.
- 236. Sullam K.E., Rubin B., Dalton C.M., Kilham S.S., Flecker A.S., Russell J.A. Divergence across diet, time and populations rules out parallel evolution in the gut microbiomes of *Trinidadian guppies* // The ISME Journal. 2015. V. 9. P. 1508-1522.
- 237. Svardson G. Significance of introgression in Coregonid evolution // Biology of Coregonid fishes. Winnipeg: Univ. Manitoba Press, 1970. P. 33-59.
- 238. Takezaki N., Rzhetsky A., Nei M. Phylogenetic test of the molecular clock and linearized trees // Molecular Biology and Evolution. 1995. V. 12. P. 823-833.
- 239. Tamura K., Dudley J., Nei M., Kumar S. MegA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 // Briefings in Molecular Biology and Evolution. 2007. V. 24. P. 1596-1599.
- 240. Thompson J.D., Higgins D.G., Gibson T.J. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice // Nucleic Acids Research. 1994. V. 22, № 22. P. 4673-4680.
- 241. Trudel M., Tremblay A., Schetagne R., Rasmusse J.B. Why are dwarf fish so small? An energetic analysis of polymorphism in lake whitefish (*Coregonus clupeaformis*) // Canadian Journal of Fisheries and Aquatic Sciences. 2001. V. 58, № 2. P. 394-405.

- 242. Turelli M., Barton N.H. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G x E interactions // Genetics. 2004. V. 166, № 2. P. 1053-1079.
- 243. Turgeon J., Estoup A., Bernatchez L. Species flock in the North American Great Lakes: molecular ecology of Lake Nipigon ciscoes (Teleostei: Coregonidae: Coregonus) // Evolution. 1999. V. 53. P. 1857-1871.
- 244. Turgeon J., Bernatchez L. Reticulate evolution and phenotypic diversity in North American ciscoes, *Coregonus* ssp. (Teleostei: Salmonidae): implications for the conservation of an evolutionary legacy // Conservation Genetics. 2003. V. 4. P. 67-81.
- 245. Turgeon J., Bernatchez L. MtDNA phylogeography of Lake Cisco (*Coregonus artedi*): evidence supporting extensive secondary contacts between two glacial races. Molec. Ecol. 2001a. V. 10. P. 987-1001.
- 246. Turgeon J., Bernatchez L. Clinal variation at microsatellite loci reveals historical secondary intergradations between glacial races of *Coregonus artedi* (Teleostei: Coregoninae) // Evolution. 2001b. V. 55, № 11. P. 2274-2286.
- 247. Uzzell T., Corbin K.W. Fitting discrete probability distributions to evolutionary events // Science. 1971. V. 172. P. 1089-1096.
- 248. Vähä J.P., Erkinaro J., Niemelä E., Primmer C.R. Life his tory and habitat features influence the within river ge netic structure of Atlantic salmon // Mol. Ecol. 2007.
 V. 16. P. 2638-2654.
- 249. Vasilieva O.B., Sukhanova L.V., Glyzina O.Y., Sapozhnikova Y.P., Yakhnenko V.M., Ripatti P.O., Nazarova M.A., Nemova N.N. Comparative analysis of lipids in muscle and liver of juvenile sympatric whitefishes under experimental conditions // Contemp. Probl. Ecol. 2016. V. 9, № 2. P. 205-211.
- 250. Wang J. The computer program STRUCTURE for assigning individuals to populations: easy to use but easier to misuse // Mol. Ecol. Resources. 2017. V. 17. I. 5. P. 2611-2620.

- 251. Waterhouse R.M., Seppey M., Simão F.A., Manni M., Ioannidis P., Klioutchnikov G., Kriventseva E.V., Zdobnov E.M. BUSCO applications from quality assessments to gene prediction and phylogenomics // Mol. Biol. Evol. 2017. V. 35(3). P. 543-548.
- 252. Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure // Evolution. 1984. V. 38. P. 1358-1370.
- 253. Welch J.J., Jiggins C. Standing and flowing: the complex origins of adaptive variation // Molecular Ecology. 2014. V. 23, № 16. P. 3935-3937.
- 254. Westram A.M., Galindo J., Alm Rosenblad M., Grahame J.W., Panova M., Butlin R.K. Do the same genes underlie parallel phenotypic divergence in different *Littorina saxatilis* populations? // Molecular Ecology. 2014. V. 23. P. 4603-4616.
- 255. Williams D. F., Peck J., Karabanov E. B., Prokopenko A. A., Kravchinsky V., King J., Kuzmin M. I. Lake Baikal record of continental climate response to orbital insolation during the Past 5 million years // Science. 1997. V. 278. P. 1114-1117.
- 256. Wittkopp P.J., Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence // Nature Reviews Genetics. 2011. V. 13. P. 59-69.
- 257. Wright S. Evolution and the genetics of populations: variability within and among natural populations // University of Chicago Press, Chicago. 1978. V. 4. 590 p.
- 258. Yang Z. Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites // Mol. Biol. Evol. 1993. V. 10. P. 1396-1401.
- 259. Ye L., Amberg J., Chapman D., Gaikowski M., Liu W.T. Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish // ISME J. 2014. V. 8, № 3. P. 541-551.
- 260. Yeaman S. Local adaptation by alleles of small effect // American Naturalist.2015. V. 186. P. 74-89.

- 261. Yeaman S., Hodgins K., Lotterhos K., Suren H. et al. Convergent local adaptation to climate in distantly related conifers // Science. 2016. V. 353, № 6306. P. 1431-1433.
- 262. Zdobnov E.M., Tegenfeldt F., Kuznetsov D., Waterhouse R.M., Simão F.A., Ioannidis P., Seppey M., Loetscher A., Kriventseva E.V. OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs // Nucleic Acids Res. 2017. V. 45. P. D744-D749.
- 263. Zhang C.X., Yang S.Y., Xu M.X., Sun J., Liu H., Liu J.R., Liu H., Kan F., Sun J., Lai R., Zhang K.Y. Serratia nematodiphila sp. nov., associated symbiotically with the entomopathogenic nematode *Heterorhabditidoides chongmingensis* (Rhabditida: Rhabditidae) // Int. J. Syst. Evol. Microbiol. 2009. V. 59, № 7. P. 1603-1608.
- 264. Zhivotovsky L.A., Yurchenko A.A., Nikitin V.D., Safronov S.N., Shitova M.V., Zolotukhin S.F., Makeev S.S., Weiss S., Rand P.S., Semenchenko A.Y. Ecogeographic units, population hierarchy, and a two level conservation strategy with reference to a critically en dangered salmonid, Sakhalin taimen *Parahucho perryi* // Conserv. Gen. 2014. V. 16. I. 2. P. 431-441.
- 265. Zheng W., Gianoulis T.A., Karczewski K.J., Zhao H., Snyder M. Regulatory variation within and between species // Annual Review of Genomics and Human Genetics. 2011. V. 12. P. 327-346.

ПРИЛОЖЕНИЕ І

Генетическая характеристика выборок из популяций байкальских сиговых по микросателлитным локусам

			Вид										
	Характе-								озерно-				
Покус	ристика		баі	йкальский о	омуль			7	речной				
vienye	выборки							сиг					
		1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9	10	11			
Bwf1	n	44	32	28	13	36	38	10	21	19			
	А	26*	22*	15	14*	8	19*	7	15*	6*			
	р	0,000	0,007	0,577	0,000	0,301	0,000	0,590	0,007	0,000			
	Hobs	0,636	0,813	0,857	0,615	0,556	0,737	0,800	0,762	0,316			
	Hexp	0,946	0,929	0,899	0,638	0,579	0,940	0,815	0,919	0,744			
	n	43	30	28	14	37	38	10	21	19			
	А	11	6*	8	8*	6	8*	4	6*	2			
	р	0,006	0,000	0,005	0,000	0,006	0,000	0,778	0,000	0,607			
22b													

1	2	3	4	5	6	7	8	9	10	11
	Hobs	0,674	0,233	<u>0,857</u>	0,428	<u>0,649</u>	0,472	0,700	0,381	0,526
	Hexp	0,759	0,453	<u>0,710</u>	0,865	<u>0,631</u>	0,784	0,558	0,786	0,443
	n	43	31	28	15	36	38	10	21	19
	А	6	7	8*	6	2	3	3	4	4
	р	0,009	0,012	0,088	0,470	0,197	0,690	0,738	0,224	1,000
Cocl23	Hobs	0,651	0,581	0,535	1,000	0,389	0,500	0,500	0,714	0,158
	Hexp	0,747	0,673	0,718	0,763	0,501	0,568	0,573	0,598	0,154
	n	44	29	27	15	36	38	10	22	18
	А	6	3	9	4	3	3	3	3	3
	р	0,001	0,003	0,000	0,005	0,836	0,210		1,000	0,113
Cam1	Hobs	<u>0,841</u>	0,517	0,629	<u>1,000</u>	0,444	0,447	<u>0,900</u>	0,591	0,444
	Hexp	<u>0,619</u>	0,618	0,753	0,689	0,402	0,591	0,574	0,574	0,446
	n	43	29	28	15	37	38	10	22	19
Cam5			<u> </u>							
	А	11	15	20*	13	9	7	4	7	7

1	2	3	4	5	6	7	8	9	10	11
	р	0,641	0,042	0,005	0,475	0,002	0,489	1,000	0,642	0,787
	Hobs	0,814	0,862	0,667	0,933	<u>0,973</u>	0,474	0,400	0,591	0,895
	Hexp	0,857	0,909	0,939	0,912	<u>0,780</u>	0,444	0,363	0,573	0,763
Средняя	Hobs	0,723	0,601	0,709	0,796	0,602	0,526 +/-	<u>0,660</u>	0,608 +/-	0,468
по 5-ти локусам	+/-	+/-	+/-	+/-	+/-	+/-	0,119	<u>+/-</u>	0,148	+/-
5	s.d.	0,096	0,253	0,142	0,260	0,230		<u>0,207</u>		0,276
Средняя	Hexp	0,786	0,716	0,804	0,834	0,579	0,667 +/-	0,577	0,690 +/-	0,510
по 5-ти	+/-	+/-	+/-	+/-	+/-	+/-	0,197	<u>+/-</u>	0,156	+/-
локусам	s.d.	0,123	0,202	0,107	0,105	0,142		0,161		0,252
Средняя	G-W	0,456	0,455	0,4249	0,393	0,444	0,429 +/-	0,4077	0,409 +/-	0,445
по 5-ти	+/-	+/-	+/-	+/-	+/-	+/-	0,170	+/-	0,163	+/-
локусам	s.d.	0,096	0,109	0,042	0,137	0,191		0,209		0,132

Примечание: 1-9 – номера выборок популяций рыб: 1 – баргузинская, 2 – посольская, 3 – селенгинская, 4 –верхнеангарская, 5 – кулиндинская; 6 – селенгинская, 7 – чивыркуйская, 8 – маломорская; 9 – верхнеангарская; п –количество исследованных экземпляров; А – число аллелей (*– наличие нулевых аллелей), р – вероятность соответствия генотипических распределений равновесию Харди—Вайнберга (жирным шрифтом отмечены статистически достоверные результаты при P < 0,05). Значения Hobs и Hexp подчеркнуты в случае, когда Hobs > Hexp при P < 0,05. G—W индекс—средний индекс аллельных «потерь» Garza-Williams на локус. Траснкрипты с достоверно различающимся уровнем экспрессии у озерного сига и байкальского омуля. Озерный сиг

		[
	Query				Score ^{***}		
Query [*] name:	length:	Hit ^{**} name:	Hit description:	E-value:	:	Identity:	Pct Idn:
1	2	3	4	5	6	7	8
			uncharacterized protein LOC106600457				
TRINITY_DN6965_c0_g4			OS=Salmo salar (Atlantic salmon) OX=8030				
_i1	869	A0A1S3R4K6	GN=LOC106600457 PE=4 SV=1	1E-028	277	52/71	73,24%
			LOW QUALITY PROTEIN: pentatricopeptide				
			repeat domain-containing protein 3, mitochondrial				
TRINITY_DN6923_c0_g2			OS=Salmo salar (Atlantic salmon)OX=8030				
_i2	1136	A0A1S3SUZ4	GN=ptcd3 PE=4 SV=1	7E-021	236	47/51	92,16%
			uncharacterized protein LOC106568775				
TRINITY_DN5261_c1_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i1	1006	A0A1S3LVP3	GN=LOC106568775 PE=4 SV=1	4E-079	639	131/185	70,81%
			RING-type domain-containing protein OS=Salmo				
TRINITY_DN5276_c1_g1			salar (Atlantic salmon) OX=8030				
_i7	2341	A0A1S3QBQ5	GN=LOC106590737 PE=4 SV=1	3E-012	175	70/132	53,03%
TRINITY_DN5224_c1_g2							
_i2	870	no hits					

(экспрессия транскриптов выше, чем у байкальского омуля).

1	2	3	4	5	6	7	8
TRINITY_DN18820_c0_g 1_i2	1232	A0A1S3NBC1	ANK_REP_REGION domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=trpc1 PE=3 SV=1	2E-094	771	140/140	100,00%
TRINITY_DN2361_c1_g1 _i12	5467	A0A1S3R4V3	Tyrosine-protein kinase receptor OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106600510 PE=3 SV=1	0	4917	931/968	96,18%
TRINITY_DN2302_c0_g1 _i2	1569	no hits					
TRINITY_DN2302_c0_g2 _i12	1879	A0A1S3QSV0	ANK_REP_REGION domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106595628 PE=4 SV=1	0	2583	492/500	98,40%
TRINITY_DN2384_c0_g1 _i5	4691	A0A1S3LBI7	G_PROTEIN_RECEP_F3_4 domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106565576 PE=3 SV=1	0	4124	774/834	92,81%
TRINITY_DN2384_c0_g1 _i2	1045	A0A1S3P4S7	G_PROTEIN_RECEP_F3_4 domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106583186 PE=3 SV=1	4E-125	978	207/211	98,10%
TRINITY_DN2384_c0_g1 _i8	1196	A0A1S3LBI7	G_PROTEIN_RECEP_F3_4 domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106565576 PE=3 SV=1	3E-109	876	194/217	89,40%
TRINITY_DN14950_c0_g 2_i1	2712	no hits					
TRINITY_DN3768_c0_g1 _i4	1973	no hits					

1	2	3	4	5	6	7	8
			Neurogenic differentiation factor OS=Salmo salar				
TRINITY_DN3757_c0_g1			(Atlantic salmon) OX=8030 GN=NDF1 PE=2				
i4	2402	B5X0Y1	SV=1	0	1560	323/354	91,24%
			Neurogenic differentiation factor OS=Salmo salar				
TRINITY_DN3757_c0_g1			(Atlantic salmon) OX=8030 GN=NDF1 PE=2				
_i2	3395	B5X0Y1	SV=1	0	1584	349/354	98,59%
			HTH_Tnp_Tc3_2 domain-containing protein				
TRINITY_DN11497_c1_g			OS=Salmo salar (Atlantic salmon) OX=8030				
1_i1	586	A0A1S3MP61	GN=LOC106573797 PE=4 SV=1	0,00001	105	20/36	55,56%
TRINITY_DN23676_c0_g							
3_i1	2073	no hits					
TRINITY_DN10554_c0_g							
1_i3	1070	no hits					
			Ubiquitin carboxyl-terminal hydrolase OS=Salmo				
TRINITY_DN233_c0_g2_i			salar (Atlantic salmon) OX=8030				
3	1401	A0A1S3RNF6	GN=LOC106603727 PE=3 SV=1	9E-023	250	61/63	96,83%
			androgen-dependent TFPI-regulating protein-like				
TRINITY_DN262_c0_g1_i			isoform X1 OS=Salmo salar (Atlantic salmon)				
4	1519	A0A1S3MCH5	OX=8030 GN=LOC106571895 PE=4 SV=1	3E-118	893	184/188	97,87%
			probable glutamate receptor OS=Salmo salar				
TRINITY_DN201_c0_g1_i			(Atlantic salmon) OX=8030 GN=LOC106565970				
4	2181	A0A1S3LDX6	PE=3 SV=1	0	2159	420/445	94,38%
TRINITY_DN201_c0_g1_i			Glutamate receptor U1 OS=Salmo salar (Atlantic				
1	2602	C0HB33	salmon) OX=8030 GN=GLRK PE=2 SV=1	0	2220	445/466	95,49%
1	2	3	4	5	6	7	8
------------------------------	------	------------	---	----------	------	---------	--------
TRINITY_DN294_c0_g1_i 3	2178	A0A1S3L298	uncharacterized protein LOC106563755 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106563755 PE=4 SV=1	0	1391	267/297	89,90%
TRINITY_DN216_c0_g1_i 4	2291	A0A1S3PNT6	Phosphodiesterase OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106586468 PE=3 SV=1	0	2659	536/564	95,04%
TRINITY_DN216_c0_g2_i 1	2761	A0A1S3NBP3	Phosphodiesterase OS=Salmo salar (Atlantic salmon) OX=8030 GN=pde1c PE=3 SV=1	0	2712	512/520	98,46%
TRINITY_DN287_c0_g1_i 4	3069	A0A1S3LZD9	J domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106569446 PE=4 SV=1	0	1629	304/315	96.51%
TRINITY_DN255_c0_g1_i 1	2273	no hits					
TRINITY_DN18348_c0_g 1_i1	942	no hits					
TRINITY_DN12817_c1_g 2_i8	2805	A0A1S3MXM1	uncharacterized protein LOC106575811 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106575811 PE=4 SV=1	0,000001	125	31/37	83,78%

1	2	3	4	5	6	7	8
TRINITY_DN10112_c0_g 1_i4	3482	A0A1S3NQX3	Ig-like domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106580852 PE=4 SV=1	0	2916	592/611	96,89%
TRINITY_DN10136_c0_g 1_i5	1002	A0A1S3PYD0	WRNPLPNID domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106588347 PE=4 SV=1	8E-041	348	86/88	97,73%
TRINITY_DN8287_c0_g2 _i1	7173	A0A1S3PH21	LOW QUALITY PROTEIN: uncharacterized protein LOC106585230 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106585230 PE=4 SV=1	0	3868	757/1449	52,24%
TRINITY_DN8426_c0_g2 _i1	599	no hits					
TRINITY_DN8491_c0_g2 _i1	2045	A0A1S3S730	ectonucleotide pyrophosphatase/phosphodiesterase family member 1 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC100380852 PE=4 SV=1	0	1826	350/371	94,34%
TRINITY_DN60060_c0_g 2_i1	1472	A0A1S3SLU9	NAD(P)(+)arginine ADP-ribosyltransferase OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106610458 PE=3 SV=1	4E-171	1242	230/268	85,82%
TRINITY_DN15000_c0_g 2_i1	486	A0A1S3M391	Ribosomal_S7 domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106570065 PE=3 SV=1	0,0004	93	20/31	64,52%
TRINITY_DN2487_c0_g1 _i1	1339	no hits					

1	2	3	4	5	6	7	8
TRINITY_DN81428_c0_g							
1_i3	345	no hits					
TRINITY_DN42702_c0_g 1_i7	1973	A0A1S3Q3G5	Homeobox domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=dlx6 PE=4 SV=1	6E-149	1111	249/249	100,00%
TRINITY_DN6619_c0_g1 _i2	4670	A0A1S3SV50	fragile X mental retardation protein 1 homolog A- like isoform X1 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106611992 PE=4 SV=1	0	1598	294/298	98,66%
TRINITY_DN6646_c0_g1 _i3	4609	A0A1S3R7B8	uncharacterized protein LOC106600971 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106600971 PE=4 SV=1	5E-133	1072	226/275	82,18%
TRINITY_DN6661_c0_g1 _i2	1712	A0A1S3NVW3	Homeobox domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106581766 PE=4 SV=1	2E-168	1233	270/276	97,83%
TRINITY_DN34577_c0_g 1_i5	617	no hits					
TRINITY_DN2658_c0_g1 _i3	3201	A0A1S3R8K9	Reverse transcriptase domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106600874 PE=4 SV=1	0,00002	113	27/104	25,96%
TRINITY_DN2677_c0_g1 _i2	2017	A0A1S3NFJ5	BHLH domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106579148 PE=4 SV=1	0	1974	419/438	95,66%
TRINITY_DN2625_c0_g1 _i8	2931	no hits					

1	2	3	4	5	6	7	8
			BH4_AAA_HYDROXYL_2 domain-containing				
TRINITY_DN2654_c2_g1			protein OS=Salmo salar (Atlantic salmon)				
_i1	2057	A0A1S3KL23	OX=8030 GN=th PE=4 SV=1	0	2416	482/486	99,18%
			Ig-like domain-containing protein OS=Salmo salar				
TRINITY_DN2630_c1_g1			(Atlantic salmon) OX=8030 GN=LOC106608104	0,000000			
_i3	1056	A0A1S3SAC0	PE=4 SV=1	5	124	24/41	58,54%
TRINITY_DN2674_c0_g3			zinc finger protein ZIC 5 OS=Salmo salar				
_i1	1368	A0A1S3NV46	(Atlantic salmon) OX=8030 GN=zic5 PE=4 SV=1	0	1853	389/407	95,58%
			Synaptosomal-associated protein OS=Salmo salar				
TRINITY_DN2622_c0_g1			(Atlantic salmon) OX=8030 GN=SN25A PE=2				
_i7	2223	C0HAS0	SV=1	3E-068	569	110/111	99,10%
			Synaptosomal-associated protein OS=Salmo salar				
TRINITY_DN2622_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106607199				
_i2	2341	A0A1S3S4Y9	PE=3 SV=1	2E-118	913	201/202	99,50%
			complement C4-B-like OS=Salmo salar (Atlantic				
TRINITY_DN2662_c0_g1			salmon) OX=8030 GN=LOC106581002 PE=4				
_i5	7349	A0A1S3NRS7	SV=1	0	7698	1445/1569	92,10%
			histone deacetylase 9-B-like OS=Salmo salar				
TRINITY_DN5632_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106605878				
_i4	2230	A0A1S3RZP7	PE=4 SV=1	0,00003	103	22/39	56,41%
TRINITY_DN3343_c0_g1							
_i2	1932	no hits					
TRINITY_DN3346_c0_g1							
i1	1196	no hits					

1	2	3	4	5	6	7	8
			uncharacterized protein LOC106564320				
TRINITY_DN3373_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
i5	3686	A0A1S3L5Q5	GN=LOC106564320 PE=4 SV=1	3E-081	717	216/678	31,86%
			zinc finger MYM-type protein 1-like isoform X1				
TRINITY_DN3399_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
i1	1772	A0A1S3NEA0	GN=LOC106578847 PE=4 SV=1	0,0001	74	18/37	48,65%
TRINITY_DN3327_c0_g1							
_i2	1134	no hits					
TRINITY_DN11655_c0_g							
3_i1	1223	no hits					
			uncharacterized protein LOC106602659				
TRINITY_DN4229_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i1	2164	A0A1S3REZ2	GN=LOC106602659 PE=4 SV=1	0,000005	119	26/34	76,47%
			C2 domain-containing protein OS=Salmo salar				
TRINITY_DN4291_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106564708				
_i3	3456	A0A1S3L692	PE=4 SV=1	1E-088	753	152/153	99,35%
TRINITY_DN4255_c0_g1							
_i3	709	no hits					
TRINITY_DN23168_c0_g							
1_i5	1880	no hits					
			CobW C-terminal domain-containing protein				
TRINITY_DN7350_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i1	2755	A0A1S3NPQ0	GN=cbwd3 PE=4 SV=1	1E-073	636	120/129	93,02%

1	2	3	4	5	6	7	8
			Glutaredoxin domain-containing protein				
TRINITY_DN1582_c0_g2			OS=Salmo salar (Atlantic salmon) OX=8030				
i4	3701	A0A1S3L9H1	GN=LOC106565239 PE=3 SV=1	3E-120	992	182/186	97,85%
			AdoMet activation domain-containing protein				
TRINITY_DN1512_c1_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i6	2415	A0A1S3QI67	GN=LOC106592895 PE=4 SV=1	0	1853	359/393	91,35%
TRINITY_DN1561_c2_g1							
_i1	715	no hits					
TRINITY_DN1527_c2_g3							
_i1	823	no hits					
TRINITY_DN1532_c1_g2							
_i1	765	no hits					
			transcription factor HIVEP3-like isoform X1				
TRINITY_DN881_c0_g1_i			OS=Salmo salar (Atlantic salmon) OX=8030				
5	2969	A0A1S3Q003	GN=LOC106588641 PE=4 SV=1	0	1998	527/618	85,28%
			poly(RC)-binding protein 3 isoform X1 OS=Salmo				
TRINITY_DN820_c1_g1_i			salar (Atlantic salmon) OX=8030				
2	1801	A0A1S3NVD9	GN=LOC106581674 PE=4 SV=1	1E-086	469	90/91	98,90%
TRINITY_DN899_c2_g2_i							
7	1390	no hits					
			heat shock 70 kDa protein 12A-like isoform X1				
TRINITY_DN826_c1_g1_i			OS=Salmo salar (Atlantic salmon) OX=8030				
1	5381	A0A1S3S1P8	GN=LOC106606490 PE=4 SV=1	0	3292	617/657	93,91%

1	2	3	4	5	6	7	8
			Clathrin heavy chain OS=Salmo salar (Atlantic				
TRINITY_DN826_c0_g1_i			salmon) OX=8030 GN=LOC106580423 PE=3				
7	471	A0A1S3NNW9	SV=1	0,0001	97	16/37	43,24%
			microprocessor complex subunit DGCR8 isoform				
TRINITY_DN886_c1_g1_i			X1 OS=Salmo salar (Atlantic salmon) OX=8030				
1	3308	A0A1S3PFJ6	GN=dgcr8 PE=4 SV=1	0	3095	604/647	93,35%
			G-patch domain-containing protein OS=Salmo				
TRINITY_DN833_c0_g1_i			salar (Atlantic salmon) OX=8030				
3	5497	A0A1S3R9L2	GN=LOC106601128 PE=4 SV=1	0	1895	543/628	86,46%
			uncharacterized protein LOC106584346 isoform				
TRINITY_DN848_c0_g1_i			X1 OS=Salmo salar (Atlantic salmon) OX=8030				
1	3580	A0A1S3PBY5	GN=LOC106584346 PE=4 SV=1	0	2866	554/616	89,94%
			Serine/threonine-protein kinase RIO1 OS=Salmo				
TRINITY_DN1826_c0_g2			salar (Atlantic salmon) OX=8030 GN=riok1 PE=3				
_i2	4114	A0A1S3QUP3	SV=1	0	2302	484/505	95,84%
TRINITY_DN1837_c2_g1							
i2	1616	no hits					
			CRF domain-containing protein OS=Salmo salar				
TRINITY_DN1873_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106593864				
i4	2043	A0A1S3QLV1	PE=4 SV=1	7E-098	762	145/153	94,77%
			CRF domain-containing protein OS=Salmo salar				
TRINITY_DN1873_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106593864				
_i5	2113	A0A1S3QLV1	PE=4 SV=1	1E-097	762	145/153	94,77%

1	2	3	4	5	6	7	8
			CYCLIN domain-containing protein OS=Salmo				
TRINITY_DN1878_c0_g1			salar (Atlantic salmon) OX=8030 GN=CCNI				
_i2	2564	B5X2H1	PE=2 SV=1	2E-035	349	68/101	67,33%
TRINITY_DN1862_c0_g1			Heme-binding protein 2 OS=Salmo salar (Atlantic				
_i11	1211	B5X719	salmon) OX=8030 GN=HEBP2 PE=2 SV=1	1E-111	837	154/166	92,77%
			aggrecan core protein-like isoform X1 OS=Salmo				
TRINITY_DN3575_c0_g1			salar (Atlantic salmon) OX=8030				
	3096	A0A1S3NQU5	GN=LOC106580754 PE=4 SV=1	0	1485	257/267	96,25%
			SH3 domain-containing protein OS=Salmo salar				
TRINITY_DN3524_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106586393				
i2	4518	A0A1S3PN56	PE=4 SV=1	3E-168	1330	285/333	85,59%
			immunoglobulin superfamily member 21-like				
TRINITY_DN3525_c0_g2			isoform X1 OS=Salmo salar (Atlantic salmon)				
_i5	1798	A0A1S3P3I3	OX=8030 GN=LOC106582978 PE=4 SV=1	3E-052	476	88/91	96,70%
			Ubiquitin-fold modifier-conjugating enzyme 1				
TRINITY_DN18108_c0_g			OS=Salmo salar (Atlantic salmon) OX=8030				
1_i2	2385	B9EM04	GN=ufc1 PE=2 SV=1	3E-115	888	164/167	98,20%
			Phosphatase and actin regulator OS=Salmo salar				
TRINITY_DN18198_c0_g			(Atlantic salmon) OX=8030 GN=LOC106589662				
1_i4	2722	A0A1S3Q620	PE=3 SV=1	3E-141	1118	225/228	98,68%
			Homeobox domain-containing protein OS=Salmo				
TRINITY_DN2735_c0_g1			salar (Atlantic salmon) OX=8030 GN=DLX5A				
_i2	2474	B5X679	PE=2 SV=1	0	1518	284/286	99,30%

-							
1	2	3	4	5	6	7	8
			Homeobox domain-containing protein OS=Salmo				
TRINITY_DN2735_c0_g1			salar (Atlantic salmon) OX=8030 GN=DLX5A				
i3	1907	B5X679	PE=2 SV=1	0	1491	279/286	97,55%
			Microtubule-associated protein RP/EB family				
TRINITY_DN2794_c0_g1			member 1 OS=Salmo salar (Atlantic salmon)				
_i3	5184	C0H9W6	OX=8030 GN=MARE1 PE=2 SV=1	3E-164	1285	237/252	94,05%
			Proto-oncogene tyrosine-protein kinase receptor				
TRINITY_DN2799_c0_g1			Ret OS=Salmo salar (Atlantic salmon) OX=8030				
_i3	3781	A0A1S3RRC1	GN=LOC106604566 PE=3 SV=1	0	4869	920/958	96,03%
			E3 ubiquitin-protein ligase TRIP12 isoform X1				
TRINITY DN2703 c0 g1			OS=Salmo salar (Atlantic salmon) OX=8030				
i2	4947	A0A1S3NRQ1	GN=LOC106580884 PE=4 SV=1	0	5202	1040/1062	97,93%
TRINITY DN14254 c0 g			Tetraspanin OS=Salmo salar (Atlantic salmon)				
1_i4	1018	A0A1S3QM43	OX=8030 GN=LOC106593603 PE=3 SV=1	5E-096	727	163/178	91,57%
TRINITY_DN14254_c0_g			Tetraspanin OS=Salmo salar (Atlantic salmon)				
1_i2	722	A0A1S3QM43	OX=8030 GN=LOC106593603 PE=3 SV=1	1E-097	727	163/178	91,57%
			G_PROTEIN_RECEP_F1_2 domain-containing				
TRINITY_DN9928_c0_g1			protein OS=Salmo salar (Atlantic salmon)				
_i7	2385	B5X6V6	OX=8030 GN=P2RY8 PE=2 SV=1	0	1514	315/356	88,48%
			zinc finger and BTB domain-containing protein 18				
TRINITY_DN9238_c0_g1			isoform X1 OS=Salmo salar (Atlantic salmon)				
_i2	4956	A0A1S3Q7Q7	OX=8030 GN=zbtb18 PE=4 SV=1	0	2690	531/557	95,33%
			zinc finger and BTB domain-containing protein 18				
TRINITY_DN9238_c0_g1			isoform X1 OS=Salmo salar (Atlantic salmon)				
_i3	5049	A0A1S3Q7Q7	OX=8030 GN=zbtb18 PE=4 SV=1	0	2690	531/557	95,33%

1	2	3	4	5	6	7	8
TRINITY_DN4411_c0_g1							
_i14	321	no hits					
TRINITY_DN4411_c0_g1							
i10	406	no hits					
TRINITY_DN4400_c0_g1 _i2	1257	A0A1S3MD18	methylglutaconyl-CoA hydratase, mitochondrial OS=Salmo salar (Atlantic salmon) OX=8030 GN=auh PE=3 SV=1	7E-019	216	40/43	93,02%
TRINITY_DN8711_c0_g2 _i1	1303	B5X5M7	Gamma-aminobutyric acid receptor-associated protein-like 2 OS=Salmo salar (Atlantic salmon) OX=8030 GN=GBRL2 PE=2 SV=1	1E-079	618	117/117	100,00%
TRINITY_DN8731_c0_g1 _i3	4886	A0A1S3LQ50	cell surface glycoprotein MUC18-like isoform X1 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106567672 PE=4 SV=1	0	2972	587/617	95,14%
TRINITY_DN1291_c0_g1 _i1	5767	A0A1S3LJT4	Sodium channel protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106567001 PE=3 SV=1	4E-082	773	155/156	99,36%
TRINITY_DN1212_c1_g1 _i2	987	B5DGN6	Calmodulin OS=Salmo salar (Atlantic salmon) OX=8030 GN=CALM PE=2 SV=1	1E-090	683	132/132	100,00%
TRINITY_DN5391_c0_g1 _i2	4548	A0A1S3T4C5	nardilysin-like OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106613566 PE=3 SV=1	0	5231	1035/1106	93,58%
TRINITY_DN5313_c0_g1 i2	1392	A0A1S3QTI1	Tetraspanin OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106595881 PE=3 SV=1	1E-124	929	208/225	92,44%
TRINITY_DN6574_c0_g3 _i1	997	no hits					

1	2	3	4	5	6	7	8
TRINITY_DN6565_c0_g1							
_i9	1243	no hits					
			calcium homeostasis endoplasmic reticulum				
TRINITY_DN3831_c0_g4			protein isoform X1 OS=Salmo salar (Atlantic				
	1631	A0A1S3MP82	salmon) OX=8030 GN=cherp PE=4 SV=1	0,0001	107	29/53	54,72%
			aromatase isoform X1 OS=Salmo salar (Atlantic				
TRINITY_DN3878_c0_g1			salmon) OX=8030 GN=LOC106584746 PE=3				
_i7	2755	A0A1S3PDT0	SV=1	0	1711	331/350	94,57%
			aromatase isoform X1 OS=Salmo salar (Atlantic				
TRINITY_DN3878_c0_g1			salmon) OX=8030 GN=LOC106584746 PE=3				
_i16	2095	A0A1S3PDT0	SV=1	0	1711	331/350	94,57%
TRINITY_DN4889_c0_g2							
_i1	1053	no hits					
			EF-hand domain-containing protein OS=Salmo				
TRINITY_DN4838_c0_g1			salar (Atlantic salmon) OX=8030				
_i6	1365	A0A1S3M3C4	GN=LOC106570103 PE=4 SV=1	0,00005	101	20/42	47,62%
TRINITY_DN1450_c0_g3			transposase-like OS=Salmo salar (Atlantic salmon)				
_i2	1959	B5RI68	OX=8030 GN=LOC100194703 PE=2 SV=1	3E-027	285	93/303	30,69%
TRINITY_DN1467_c1_g1							
_i1	658	no hits					
TRINITY_DN1485_c0_g2							
_i2	1152	no hits					
			HATPase_c domain-containing protein OS=Salmo				
TRINITY_DN1444_c0_g1			salar (Atlantic salmon) OX=8030				
_i1	1648	A0A1S3KS25	GN=LOC106561706 PE=3 SV=1	1E-078	674	126/127	99,21%

1	2	3	4	5	6	7	8
TRINITY_DN1428_c1_g1							
_i1	2788	no hits					
TRINITY_DN1428_c1_g1							
_i10	2844	no hits					
			transcription factor Sp8-like isoform X1				
TRINITY_DN3184_c0_g1	4.40.1		OS=Salmo salar (Atlantic salmon) OX=8030	0	1061	120/110	07 770/
16	4491	A0A1S3MNM1	GN=LOC106573674 PE=4 SV=1	0	1861	439/449	97,77%
			transcription factor Sp8-like isoform X1				
TRINITY_DN3184_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030	_			
	4487	A0A1S3MNM1	GN=LOC106573674 PE=4 SV=1	0	1861	439/449	97,77%
TRINITY_DN3150_c0_g1							
_i5	2397	no hits					
			NOT2_3_5 domain-containing protein OS=Salmo				
TRINITY_DN3106_c0_g1			salar (Atlantic salmon) OX=8030 GN=cnot2 PE=4				
_i6	3794	A0A1S3PCP4	SV=1	0	2346	477/562	84,88%
			NOT2_3_5 domain-containing protein OS=Salmo				
TRINITY_DN3106_c0_g1			salar (Atlantic salmon) OX=8030 GN=cnot2 PE=4				
_i2	3446	A0A1S3PCP4	SV=1	0	1758	332/364	91,21%
TRINITY_DN3185_c0_g1							
_i1	2358	no hits					
			Ribosomal_S7 domain-containing protein				
TRINITY_DN4134_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i2	1951	A0A1S3M391	GN=LOC106570065 PE=3 SV=1	0,000009	116	22/26	84,62%
TRINITY_DN4192_c0_g2							
i1	926	no hits					

1	2	3	4	5	6	7	8
TRINITY_DN21378_c0_g							
2_i1	935	no hits					
			Ig-like domain-containing protein OS=Salmo salar				
TRINITY_DN5081_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106608104	0,000000			
	1806	A0A1S3SAC0	PE=4 SV=1	2	131	24/33	72,73%
			immediate early response gene 2 protein-like				
TRINITY_DN8525_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
i2	1427	A0A1S3QHL6	GN=LOC106592726 PE=4 SV=1	9E-100	762	168/190	88,42%
			vesicle-trafficking protein SEC22b-B-like isoform				
TRINITY_DN1158_c0_g1			X1 OS=Salmo salar (Atlantic salmon) OX=8030				
i3	2452	A0A1S3PBS1	GN=LOC106584381 PE=3 SV=1	7E-014	176	33/36	91,67%
			neuronal PAS domain-containing protein 4-like				
TRINITY_DN1199_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i4	2242	A0A1S3STV0	GN=LOC106611754 PE=4 SV=1	9E-054	510	143/149	95,97%
			neuronal PAS domain-containing protein 4-like				
TRINITY_DN1199_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i2	2255	A0A1S3STV0	GN=LOC106611754 PE=4 SV=1	9E-054	510	143/149	95,97%
			transcription factor Sp9 OS=Salmo salar (Atlantic				
TRINITY_DN1119_c0_g1			salmon) OX=8030 GN=LOC106586239 PE=4				
_i1	4771	A0A1S3PM74	SV=1	0	1712	432/434	99,54%
			transcription factor Sp9 OS=Salmo salar (Atlantic				
TRINITY_DN1119_c0_g1			salmon) OX=8030 GN=LOC106586239 PE=4				
_i2	4784	A0A1S3PM74	SV=1	0	1712	432/434	99,54%

1	2	3	4	5	6	7	8
			pro-neuropeptide Y OS=Salmo salar (Atlantic				
TRINITY_DN1182_c0_g1			salmon) OX=8030 GN=LOC100380778 PE=3				
i1	782	A0A1S3Q351	SV=1	1E-087	659	124/128	96,88%
			RING-CH-type domain-containing protein				
TRINITY_DN1146_c0_g2			OS=Salmo salar (Atlantic salmon) OX=8030				
_i3	2542	A0A1S3LKK2	GN=LOC106567081 PE=4 SV=1	0	1490	325/333	97,60%
			potassium/sodium hyperpolarization-activated				
			cyclic nucleotide-gated channel 1-like OS=Salmo				
TRINITY_DN1186_c0_g1			salar (Atlantic salmon) OX=8030				
_i3	1321	A0A1S3KLB4	GN=LOC106560737 PE=4 SV=1	0,0004	100	17/24	70,83%
			uncharacterized protein LOC106590369				
TRINITY_DN97917_c0_g			OS=Salmo salar (Atlantic salmon) OX=8030				
1_i1	615	A0A1S3Q9Z4	GN=LOC106590369 PE=4 SV=1	0,00007	101	19/19	100,00%
TRINITY_DN9798_c0_g1							
	581	no hits					
			Fibronectin type-II domain-containing protein				
TRINITY_DN4396_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i4	2889	A0A1S3MBT0	GN=LOC106571688 PE=4 SV=1	0	1987	369/377	97,88%
			Sodium/potassium-transporting ATPase subunit				
TRINITY_DN2270_c0_g1			alpha OS=Salmo salar (Atlantic salmon) OX=8030				
	3067	A0A1S3RUC3	GN=LOC106605102 PE=3 SV=1	0	2634	487/512	95,12%
			Sodium/potassium-transporting ATPase subunit				
TRINITY_DN2270_c0_g1			alpha OS=Salmo salar (Atlantic salmon) OX=8030				
_i3	3092	A0A1S3P5H1	GN=LOC106583316 PE=3 SV=1	0	2759	513/520	98,65%

1	2	3	4	5	6	7	8
TRINITY DN2241 c2 g1							-
_i3	838	no hits					
			LRRNT domain-containing protein OS=Salmo				
TRINITY_DN2228_c1_g4			salar (Atlantic salmon) OX=8030				
_i2	4773	A0A1S3LEW3	GN=LOC106566167 PE=4 SV=1	7E-144	1146	248/258	96,12%
TRINITY_DN3490_c2_g1							
_i7	825	no hits					
			Cannabinoid receptor OS=Salmo salar (Atlantic				
TRINITY_DN128_c0_g1_i			salmon) OX=8030 GN=LOC106571286 PE=3				
3	3588	A0A1S3M9G2	SV=1	0	2364	453/468	96,79%
			SH3 and PX domain-containing protein 2B-like				
TRINITY_DN141_c0_g2_i			isoform X1 OS=Salmo salar (Atlantic salmon)				
3	5667	A0A1S3RMG2	OX=8030 GN=LOC106603845 PE=4 SV=1	0	3201	816/950	85,89%
			Homeobox domain-containing protein OS=Salmo				
TRINITY_DN174_c0_g1_i			salar (Atlantic salmon) OX=8030 GN=dlx1 PE=4				
6	3846	A0A1S3PN70	SV=1	5E-134	1055	246/255	96,47%
			Homeobox domain-containing protein OS=Salmo				
TRINITY_DN174_c0_g1_i			salar (Atlantic salmon) OX=8030				
1	3832	A0A1S3NW99	GN=LOC106581767 PE=4 SV=1	8E-154	1190	252/255	98,82%
			arginine and glutamate-rich protein 1-B-like				
TRINITY_DN191_c0_g1_i			isoform X1 OS=Salmo salar (Atlantic salmon)				
2	1821	A0A1S3PQT6	OX=8030 GN=LOC106586866 PE=4 SV=1	3E-033	325	82/82	100,00%
TRINITY_DN120_c0_g1_i							
2	3511	no hits					

1	2	3	4	5	6	7	8
TRINITY_DN100_c0_g1_i			zinc finger protein 850-like OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106564398				
1	487	A0A1S3L4R0	PE=4 SV=1	0,0002	96	18/26	69,23%
TRINITY_DN129_c0_g1_i 1	5144	A0A1S3M0L4	neurocan core protein-like OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106569686 PE=4 SV=1	0	2261	515/560	91,96%
TRINITY_DN118_c120_g 1_i1	4552	no hits					
TRINITY_DN11046_c0_g	23/3	4041S3NI73	Sodium channel protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106579582 PE=3	2E-148	1233	253/266	95 11%
$\frac{1_{1}}{1_{1}}$	2373		57-1	2L-1 - 0	1233	233/200	75,1170
1_i4	1693	no hits					
TRINITY_DN6239_c1_g2 _i4	1628	no hits					
TRINITY_DN48588_c0_g 1_i3	1588	B5RI68	transposase-like OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC100194703 PE=2 SV=1	0,00005	109	27/62	43,55%
TRINITY_DN2059_c0_g1 _i2	488	no hits					
TRINITY_DN2069_c0_g2 _i1	3089	A0A1S3S7P6	crooked neck-like protein 1 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106607683 PE=4 SV=1	0	2232	478/525	91,05%
TRINITY_DN12307_c0_g 1_i2	7410	A0A1S3S9G9	pleckstrin homology domain-containing family G member 1 isoform X1 OS=Salmo salar (Atlantic salmon) OX=8030 GN=plekhg1 PE=4 SV=1	0	6463	1481/1605	92,27%

1	2	3	4	5	6	7	8
TRINITY_DN1395_c0_g1							
_i3	1951	no hits					
			VWFA domain-containing protein OS=Salmo				
TRINITY_DN1326_c1_g1			salar (Atlantic salmon) OX=8030				
i2	1462	A0A1S3PD67	GN=LOC106584529 PE=4 SV=1	3E-074	650	130/139	93,53%
			prosaposin-like isoform X1 OS=Salmo salar				
TRINITY_DN1355_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106589952				
_i7	2594	A0A1S3Q7D0	PE=4 SV=1	0	2347	477/543	87,85%
TRINITY_DN1381_c0_g1							
_i2	768	no hits					
			LOW QUALITY PROTEIN: protein polybromo-				
TRINITY_DN1323_c1_g1			1-like OS=Salmo salar (Atlantic salmon)				
_i5	5180	A0A1S3LBK7	OX=8030 GN=LOC106565587 PE=4 SV=1	0	4339	943/1005	93,83%
TRINITY_DN1380_c1_g2							
_i1	1031	no hits					
TRINITY_DN1316_c1_g1			Grancalcin OS=Salmo salar (Atlantic salmon)				
_i12	2745	B5X593	OX=8030 GN=GRAN PE=2 SV=1	3E-065	557	101/107	94,39%
			Core histone macro-H2A OS=Salmo salar				
TRINITY_DN1305_c1_g1			(Atlantic salmon) OX=8030 GN=H2AW PE=2				
_i3	1770	B5X351	SV=1	0	1820	365/371	98,38%
			glycogen debranching enzyme-like isoform X1				
TRINITY_DN2147_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i1	6062	A0A1S3LW16	GN=LOC106568905 PE=4 SV=1	0	7864	1439/1510	95,30%

1	2	3	4	5	6	7	8
			epidermal growth factor receptor kinase substrate				
TRINITY_DN2113_c0_g3			8-like protein 2 OS=Salmo salar (Atlantic salmon)				
_i2	2680	A0A1S3PE35	OX=8030 GN=eps8l2 PE=4 SV=1	0	2774	610/672	90,77%
			Synaptosomal-associated protein OS=Salmo salar				
TRINITY_DN3097_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106607199				
_i7	749	A0A1S3S4Y9	PE=3 SV=1	4E-031	287	56/56	100,00%
TRINITY_DN3097_c0_g3							
_i2	964	no hits					
			paired box protein Pax-6-like OS=Salmo salar				
TRINITY_DN3092_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106587830				
_i8	3513	A0A1S3PW75	PE=4 SV=1	0	1939	400/417	95,92%
TRINITY_DN3078_c0_g1							
_i1	2790	no hits					
			MAP7 domain-containing protein 1 isoform X1				
TRINITY_DN21591_c0_g			OS=Salmo salar (Atlantic salmon) OX=8030				
1_i21	2604	A0A1S3M4B4	GN=map7d1 PE=4 SV=1	5E-131	1061	381/428	89,02%
			LRRNT domain-containing protein OS=Salmo				
TRINITY_DN21556_c0_g			salar (Atlantic salmon) OX=8030				
2_i2	1998	A0A1S3RK90	GN=LOC106603289 PE=4 SV=1	0	1587	373/403	92,56%
TRINITY_DN5961_c0_g1							
_i4	1658	no hits					
TRINITY_DN5959_c0_g1							
_i1	1409	no hits					

1	2	3	4	5	6	7	8
TRINITY_DN5931_c0_g1 i4	3295	A0A1S3OIR0	protein asteroid homolog 1-like OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106593068 PE=4 SV=1	0	2233	477/622	76.69%
TRINITY_DN5950_c0_g2 _i3	4156	A0A1S3PKK0	C2H2-type domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106585971 PE=4 SV=1	1E-088	788	193/247	78,14%
TRINITY_DN680_c0_g1_i 14	4076	A0A1S3NI13	MAP7 domain-containing protein 2-like isoform X1 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106579474 PE=4 SV=1	1E-104	886	251/325	77,23%
TRINITY_DN680_c0_g1_i 10	4079	A0A1S3NI13	MAP7 domain-containing protein 2-like isoform X1 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106579474 PE=4 SV=1	1E-104	886	251/325	77,23%
TRINITY_DN604_c0_g1_i 2	685	no hits					
TRINITY_DN19232_c0_g 1_i5	3224	A0A1S3NF44	rho GTPase-activating protein 22-like isoform X1 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106579003 PE=4 SV=1	0	2553	552/574	96,17%
TRINITY_DN9806_c0_g2 _i8	2482	A0A1S3KUT3	CARMIL_C domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106562232 PE=4 SV=1	4E-066	610	126/145	86,90%
TRINITY_DN6039_c0_g1 _i4	2101	B5X2N5	PlsC domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=PLCC PE=2 SV=1	3E-041	393	95/96	98,96%

1	2	3	4	5	6	7	8
			ABC1 domain-containing protein OS=Salmo salar				
TRINITY_DN6046_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106612623				
i9	3753	A0A1S3SYL6	PE=4 SV=1	0	1585	290/297	97,64%
			LRRNT domain-containing protein OS=Salmo				
TRINITY_DN6480_c0_g1			salar (Atlantic salmon) OX=8030				
i9	2889	A0A1S3R7E1	GN=LOC106600854 PE=4 SV=1	7E-168	1266	277/284	97,54%
			C2 domain-containing protein OS=Salmo salar				
TRINITY_DN5849_c1_g1			(Atlantic salmon) OX=8030 GN=LOC106562178				
_i6	3190	A0A1S3KUI9	PE=4 SV=1	0	2233	489/517	94,58%
			Matrin-type domain-containing protein OS=Salmo				
TRINITY_DN4774_c0_g1			salar (Atlantic salmon) OX=8030				
_i12	7312	A0A1S3REF6	GN=LOC106602204 PE=4 SV=1	0	4835	1159/1395	83,08%
			Deoxyribonuclease OS=Salmo salar (Atlantic				
TRINITY_DN570_c0_g1_i			salmon) OX=8030 GN=LOC106583694 PE=3				
1	1732	A0A1S3P7U2	SV=1	3E-133	1005	197/217	90,78%
TRINITY_DN553_c1_g1_i			zinc finger protein ZIC 5 OS=Salmo salar				
4	4142	A0A1S3NV46	(Atlantic salmon) OX=8030 GN=zic5 PE=4 SV=1	2E-080	702	148/152	97,37%
			zinc finger protein ZIC 5-like OS=Salmo salar				
TRINITY_DN553_c1_g1_i			(Atlantic salmon) OX=8030 GN=LOC106586041				
1	4038	A0A1S3PLU8	PE=4 SV=1	2E-073	650	143/152	94,08%
			zinc finger protein ZIC 5-like OS=Salmo salar				
TRINITY_DN553_c1_g1_i			(Atlantic salmon) OX=8030 GN=LOC106586041				
3	1245	A0A1S3PLU8	PE=4 SV=1	1E-079	650	143/152	94,08%

1	2	3	4	5	6	7	8
			Tr-type G domain-containing protein OS=Salmo				
TRINITY_DN557_c0_g3_i			salar (Atlantic salmon) OX=8030				
1	4138	A0A1S3RAY3	GN=LOC106601690 PE=4 SV=1	0	2497	507/525	96,57%
			Neuromodulin_N domain-containing protein				
TRINITY_DN588_c0_g1_i			OS=Salmo salar (Atlantic salmon) OX=8030				
9	2363	B5X0W5	GN=NEUM PE=2 SV=1	6E-080	657	222/251	88,45%
			Somatostatin domain-containing protein				
TRINITY_DN579_c0_g1_i			OS=Salmo salar (Atlantic salmon) OX=8030				
1	926	A0A1S3NJM5	GN=LOC106579799 PE=4 SV=1	7E-046	383	111/114	97,37%
			zinc finger protein ZIC 2-like OS=Salmo salar				
TRINITY_DN542_c0_g1_i			(Atlantic salmon) OX=8030 GN=LOC106581638				
4	3405	A0A1S3NVJ2	PE=4 SV=1	0	1991	436/446	97,76%
			Zinc finger protein ZIC 2 OS=Salmo salar				
TRINITY_DN542_c0_g1_i			(Atlantic salmon) OX=8030 GN=ZIC2 PE=2				
6	3430	C0HAR2	SV=1	0	1988	436/447	97,54%
			zinc finger protein ZIC 2-like OS=Salmo salar				
TRINITY_DN542_c0_g1_i			(Atlantic salmon) OX=8030 GN=LOC106581638				
1	3413	A0A1S3NVJ2	PE=4 SV=1	0	2008	438/444	98,65%
			RRM domain-containing protein OS=Salmo salar				
TRINITY_DN543_c0_g1_i			(Atlantic salmon) OX=8030 GN=SFRS2 PE=2				
12	1963	B5XDF3	SV=1	0,0004	101	19/19	100,00%
			14_3_3 domain-containing protein OS=Salmo				
TRINITY_DN512_c0_g1_i			salar (Atlantic salmon) OX=8030 GN=1433E				
2	2410	B5X4L8	PE=2 SV=1	0	1347	254/255	99,61%

1	2	3	4	5	6	7	8
			Methylcrotonoyl-CoA carboxylase beta chain,				
TRINITY_DN539_c0_g1_i			mitochondrial OS=Salmo salar (Atlantic salmon)				
6	2172	C0HAQ0	OX=8030 GN=MCCC2 PE=2 SV=1	0	1894	355/356	99,72%
			methylcrotonoyl-CoA carboxylase beta chain,				
			mitochondrial isoform X2 OS=Salmo salar				
TRINITY_DN539_c0_g1_i			(Atlantic salmon) OX=8030 GN=mccc2 PE=4				
7	1319	A0A1S3M7S2	SV=1	9E-037	356	67/68	98,53%
			C1q domain-containing protein OS=Salmo salar				
TRINITY_DN943_c0_g2_i			(Atlantic salmon) OX=8030 GN=CBLN1 PE=2				
1	2680	B5X3T1	SV=1	8E-127	977	195/202	96,53%
			C1q domain-containing protein OS=Salmo salar				
TRINITY_DN943_c0_g2_i			(Atlantic salmon) OX=8030 GN=CBLN1 PE=2				
2	2646	B5X3T1	SV=1	1E-126	975	193/202	95,54%
			protein CBFA2T2 isoform X1 OS=Salmo salar				
TRINITY_DN911_c0_g1_i			(Atlantic salmon) OX=8030 GN=cbfa2t2 PE=4				
3	4057	A0A1S3P7I9	SV=1	0	2562	547/602	90,86%
TRINITY_DN994_c1_g3_i							
	2013	no hits					
			Ribosomal_S7 domain-containing protein				
TRINITY DN4504 c2 g3			OS=Salmo salar (Atlantic salmon) OX=8030	0,000000			
	977	A0A1S3M391	GN=LOC106570065 PE=3 SV=1	6	108	21/27	77,78%
			Ribosome assembly factor mrt4 OS=Salmo salar				
TRINITY_DN4566_c0_g1			(Atlantic salmon) OX=8030 GN=MRT4 PE=2				
i4	1865	B5X9A8	SV=1	6E-156	1153	221/228	96,93%

1	2	3	4	5	6	7	8
TRINITY_DN4999_c0_g1							
_i2	1916	no hits					
			MAGUK p55 subfamily member 2-like isoform				
TRINITY_DN4998_c0_g1			X1 OS=Salmo salar (Atlantic salmon) OX=8030				
_i8	3394	A0A1S3NGA5	GN=LOC106579259 PE=3 SV=1	0	2345	446/453	98,45%
			netrin-G2-like isoform X1 OS=Salmo salar				
TRINITY_DN4987_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106585788				
_i2	3522	A0A1S3PJR1	PE=4 SV=1	6E-090	802	139/148	93,92%
			C2 domain-containing protein OS=Salmo salar				
TRINITY_DN8974_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106566113				
_i6	1780	A0A1S3LEP9	PE=4 SV=1	1E-064	552	105/105	100,00%
			pyridoxal-dependent decarboxylase domain-				
			containing protein 1-like isoform X2 OS=Salmo				
TRINITY_DN8924_c0_g1			salar (Atlantic salmon) OX=8030	0,000000			
_i4	1188	A0A1S3QTX1	GN=LOC106596339 PE=4 SV=1	07	129	28/46	60,87%
TRINITY_DN8924_c0_g1							
_i5	534	no hits					
TRINITY_DN59339_c0_g							
1_i2	404	no hits					
			14 kDa phosphohistidine phosphatase-like				
TRINITY_DN12490_c0_g			OS=Salmo salar (Atlantic salmon) OX=8030				
1_i6	851	A0A1S3KKS6	GN=LOC106560654 PE=4 SV=1	2E-094	704	134/143	93,71%
			BHLH domain-containing protein OS=Salmo salar				
TRINITY_DN12472_c0_g			(Atlantic salmon) OX=8030 GN=neurod6 PE=4				
1 i1	2888	A0A1S3NCN2	SV=1	0	1554	347/356	97,47%

1	2	3	4	5	6	7	8
			ANK REP REGION domain-containing protein				
TRINITY DN6857 c1 g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i3	2260	A0A1S3P897	GN=LOC106583758 PE=4 SV=1	0	2462	493/531	92,84%
TRINITY_DN1989_c0_g3			Cytidine deaminase OS=Salmo salar (Atlantic				
_i6	2994	B9EPM5	salmon) OX=8030 GN=CDD PE=2 SV=1	2E-104	827	151/166	90,96%
			ANK_REP_REGION domain-containing protein				
TRINITY_DN1990_c1_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i3	3492	A0A1S3MV41	GN=LOC106575215 PE=3 SV=1	0	1858	358/359	99,72%
			proenkephalin-A-like OS=Salmo salar (Atlantic				
TRINITY_DN773_c0_g1_i			salmon) OX=8030 GN=LOC106599210 PE=4				
2	1673	A0A1S3R0C2	SV=1	6E-031	302	59/63	93,65%
			Protein kinase domain-containing protein				
TRINITY_DN748_c0_g1_i			OS=Salmo salar (Atlantic salmon) OX=8030				
5	2618	A0A1S3SCI3	GN=LOC100380644 PE=4 SV=1	0	2734	504/511	98,63%
TRINITY_DN748_c1_g3_i							
1	901	no hits					
			Early growth response protein OS=Salmo salar				
TRINITY_DN791_c0_g1_i			(Atlantic salmon) OX=8030 GN=LOC106603906				
4	4511	A0A1S3RPH0	PE=3 SV=1	0	1839	361/407	88,70%
			Early growth response protein OS=Salmo salar				
TRINITY_DN791_c0_g1_i			(Atlantic salmon) OX=8030 GN=LOC106611930				
7	3354	A0A1S3SUQ7	PE=3 SV=1	0	1870	449/521	86,18%
			peripheral plasma membrane protein CASK				
TRINITY_DN2503_c0_g1			isoform X1 OS=Salmo salar (Atlantic salmon)				
_i1	5941	A0A1S3NX39	OX=8030 GN=cask PE=3 SV=1	0	4666	885/972	91,05%

1	2	3	4	5	6	7	8
TRINITY_DN2546_c0_g1							
_i3	3164	no hits					
TRINITY_DN10394_c0_g							
1_i6	929	no hits					
			fibroblast growth factor receptor-like 1 isoform X1				
TRINITY_DN8318_c0_g2			OS=Salmo salar (Atlantic salmon) OX=8030				
i2	6537	A0A1S3RTI3	GN=LOC106604946 PE=4 SV=1	4E-125	1076	202/334	60,48%
TRINITY_DN8343_c0_g1							
	2235	no hits					
			transmembrane protein C15orf27 homolog				
TRINITY_DN2974_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
	4259	A0A1S3QTX0	GN=LOC106596078 PE=4 SV=1	0	1573	371/420	88,33%
			UPF0577 protein KIAA1324-like OS=Salmo salar				
TRINITY_DN2954_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106609435				
i4	3796	A0A1S3SHE6	PE=4 SV=1	0	3597	666/697	95,55%
			uncharacterized protein LOC106603523 isoform				
TRINITY_DN40588_c0_g			X1 OS=Salmo salar (Atlantic salmon) OX=8030				
1_i8	304	A0A1S3RKK0	GN=LOC106603523 PE=4 SV=1	6E-011	138	35/93	37,63%
TRINITY_DN463_c0_g1_i							
9	5335	no hits					
			ETS domain-containing protein OS=Salmo salar				
TRINITY_DN492_c0_g1_i			(Atlantic salmon) OX=8030 GN=LOC106582336				
4	3841	A0A1S3NZU1	PE=3 SV=1	0	2411	484/545	88,81%
TRINITY_DN435_c0_g2_i							
2	3245	no hits					

1	1						
1	2	3	4	5	6	7	8
			Palmitoyl-protein thioesterase 1 OS=Salmo salar				
TRINITY_DN456_c0_g1_i			(Atlantic salmon) OX=8030 GN=PPT1 PE=2				
5	9518	B5XBP6	SV=1	0	1467	269/281	95,73%
			zinc finger protein ZIC 1 OS=Salmo salar				
TRINITY_DN415_c1_g1_i			(Atlantic salmon) OX=8030 GN=LOC100136467				
2	1283	A0A1S3QBF4	PE=4 SV=1	7E-053	465	125/127	98,43%
TRINITY_DN443_c1_g1_i							
2	1161	no hits					
			rasGAP-activating-like protein 1 OS=Salmo salar				
TRINITY_DN52318_c0_g			(Atlantic salmon) OX=8030 GN=LOC106579924				
1_i1	2601	A0A1S3NK70	PE=4 SV=1	1E-029	319	64/72	88,89%
			rasGAP-activating-like protein 1 OS=Salmo salar				
TRINITY_DN52318_c0_g			(Atlantic salmon) OX=8030 GN=LOC106579924				
1_i2	5029	A0A1S3NK70	PE=4 SV=1	0	4215	798/818	97,56%
			GRB2-associated-binding protein 1-like isoform				
TRINITY_DN395_c0_g1_i			X1 OS=Salmo salar (Atlantic salmon) OX=8030				
12	3493	A0A1S3SKU1	GN=LOC106610242 PE=4 SV=1	5E-057	488	96/103	93,20%
TRINITY_DN343_c4_g1_i							
1	1096	no hits					
TRINITY_DN391_c0_g1_i							
1	1452	no hits					
			pre-mRNA-processing factor 39 isoform X1				
TRINITY_DN381_c0_g1_i			OS=Salmo salar (Atlantic salmon) OX=8030				
12	2116	A0A1S3MB64	GN=prpf39 PE=4 SV=1	6E-138	1093	229/250	91,60%

1	2	3	4	5	6	7	8
TRINITY_DN14746_c0_g	2219		Gastrin domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=CCK-N	25.049	10.4	07/110	72.110/
3_11	2218	B31YK4	PE=2 SV=1	2E-048	424	87/119	/3,11%
TRINITY_DN5450_c0_g1							
i2	4225	no hits					
TRINITY_DN7487_c0_g1							
_i4	2044	no hits					
TRINITY_DN7487_c0_g1							
_i8	2142	no hits					
			retinoic acid-induced protein 2-like OS=Salmo				
TRINITY_DN7446_c1_g1			salar (Atlantic salmon) OX=8030				
	4473	A0A1S3QLA1	GN=LOC106593956 PE=4 SV=1	1E-154	1245	260/302	86,09%
			rho GTPase-activating protein 39-like isoform X1				
TRINITY_DN15147_c0_g			OS=Salmo salar (Atlantic salmon) OX=8030				
1_i6	3049	A0A1S3P2V7	GN=LOC106582900 PE=4 SV=1	0	3443	696/718	96,94%
			ANK REP REGION domain-containing protein				
TRINITY DN15158 c1 g			OS=Salmo salar (Atlantic salmon) OX=8030				
1_i1	3089	A0A1S3SMW3	GN=LOC106610701 PE=4 SV=1	0	2931	686/761	90,14%
			Ig-like domain-containing protein OS=Salmo salar				
TRINITY DN3698 c0 g1			(Atlantic salmon) OX=8030 GN=LOC106597253				
	1005	A0A1S3QUY3	PE=4 SV=1	1E-010	145	29/32	90,62%
TRINITY DN3614 c1 g1		```					
i3	1237	no hits					
TRINITY DN3631 c0 g1							
	2286	no hits					

1	2	3	4	5	6	7	8
TRINITY_DN7784_c0_g3							
_i2	1472	no hits					
TRINITY_DN35801_c0_g							
1_i1	531	no hits					
			Homeobox domain-containing protein OS=Salmo				
TRINITY_DN15580_c0_g			salar (Atlantic salmon) OX=8030				
1_i1	2168	A0A1S3QMG1	GN=LOC106594315 PE=4 SV=1	0	1853	481/551	87,30%
TRINITY_DN19497_c0_g							
1_i2	1414	no hits					
			PH and SEC7 domain-containing protein 3-like				
TRINITY_DN20287_c0_g			isoform X1 OS=Salmo salar (Atlantic salmon)				
1_i3	4725	A0A1S3M9X7	OX=8030 GN=LOC106571427 PE=4 SV=1	0	1562	308/312	98,72%
			Receptor expression-enhancing protein OS=Salmo				
			salar (Atlantic salmon) OX=8030 GN=REEP5				
TRINITY_DN25_c4_g1_i2	1079	B5X9E9	PE=2 SV=1	2E-110	822	184/194	94,85%
			TPR_REGION domain-containing protein				
			OS=Salmo salar (Atlantic salmon) OX=8030				
TRINITY_DN50_c0_g1_i7	3523	A0A1S3N3F2	GN=LOC106576879 PE=4 SV=1	0	1872	396/405	97,78%
			KH domain-containing protein OS=Salmo salar				
			(Atlantic salmon) OX=8030 GN=LOC100380864				
TRINITY_DN6_c0_g1_i7	3030	A0A1S3SNT4	PE=4 SV=1	5E-034	342	115/119	96,64%
			Guanylate cyclase OS=Salmo salar (Atlantic				
			salmon) OX=8030 GN=LOC106602763 PE=3				
TRINITY_DN72_c1_g1_i5	2164	A0A1S3RFJ9	SV=1	3E-177	1378	271/296	91,55%

1	2	3	4	5	6	7	8
TRINITY_DN10691_c0_g							
1_i5	557	no hits					
			TRIO and F-actin-binding protein-like OS=Salmo				
TRINITY_DN64745_c0_g			salar (Atlantic salmon) OX=8030				
1_i2	1320	A0A1S3QSW6	GN=LOC106596376 PE=4 SV=1	3E-043	370	74/77	96,10%
			probable C-mannosyltransferase DPY19L1				
TRINITY_DN3902_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i10	4625	A0A1S3NSX2	GN=LOC106581155 PE=4 SV=1	0	1486	282/470	60,00%
			dystonin-like isoform X1 OS=Salmo salar				
TRINITY_DN3973_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106612695				
_i2	9489	A0A1S3SZ28	PE=4 SV=1	0	9571	2043/2875	71,06%
			Sodium/hydrogen exchanger OS=Salmo salar				
TRINITY_DN14185_c0_g			(Atlantic salmon) OX=8030 GN=slc9a8 PE=3				
1_i2	3066	A0A1S3LH65	SV=1	0	1624	340/350	97,14%
			dipeptidyl aminopeptidase-like protein 6 isoform				
TRINITY_DN4086_c0_g3			X1 OS=Salmo salar (Atlantic salmon) OX=8030				
i2	4985	A0A1S3QAL9	GN=LOC106590427 PE=3 SV=1	0	3645	692/711	97,33%
			receptor-type tyrosine-protein phosphatase F				
TRINITY_DN4647_c0_g2			isoform X1 OS=Salmo salar (Atlantic salmon)				
i2	1547	A0A1S3KIS1	OX=8030 GN=ptprf PE=4 SV=1	0	2525	456/458	99,56%
			HTH_Tnp_Tc3_2 domain-containing protein				
TRINITY_DN4654_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i2	560	A0A1S3MP61	GN=LOC106573797 PE=4 SV=1	0,00008	99	19/36	52,78%

1	2	3	4	5	6	7	8
			BZIP domain-containing protein OS=Salmo salar				
TRINITY_DN15835_c0_g			(Atlantic salmon) OX=8030 GN=LOC106571028				
1_i3	2056	A0A1S3M842	PE=4 SV=1	2E-172	1281	312/355	87,89%
			Very-long-chain (3R)-3-hydroxyacyl-CoA				
TRINITY_DN1099_c0_g1			dehydratase OS=Salmo salar (Atlantic salmon)				
_i2	2351	B5XG51	OX=8030 GN=PHS1 PE=2 SV=1	4E-170	1261	241/243	99,18%
			Tr-type G domain-containing protein OS=Salmo				
TRINITY_DN1079_c0_g1			salar (Atlantic salmon) OX=8030 GN=EF2 PE=2				
_i15	1146	B5X1W2	SV=1	0	1445	262/272	96,32%
			Acetyl-coenzyme A synthetase OS=Salmo salar				
TRINITY_DN9666_c0_g3			(Atlantic salmon) OX=8030 GN=LOC106596660				
_i1	3060	A0A1S3QVF3	PE=3 SV=1	0	3282	634/676	93,79%
			uncharacterized protein LOC106565090 isoform				
TRINITY_DN3262_c0_g1			X1 OS=Salmo salar (Atlantic salmon) OX=8030				
_i5	9282	A0A1S3L8G1	GN=LOC106565090 PE=4 SV=1	0	6210	1133/1242	91,22%
			uncharacterized protein LOC106565090 isoform				
TRINITY_DN3262_c0_g1			X1 OS=Salmo salar (Atlantic salmon) OX=8030				
_i3	9141	A0A1S3L8G1	GN=LOC106565090 PE=4 SV=1	0	6159	1128/1237	91,19%
			E3 ubiquitin-protein ligase HERC2 OS=Salmo				
TRINITY DN3210 c0 g1			salar (Atlantic salmon) OX=8030 GN=herc2 PE=4				
	2750	A0A1S3T3A8	SV=1	0	2759	559/566	98,76%
			Arf-GAP domain-containing protein OS=Salmo				
TRINITY_DN3245_c3_g1			salar (Atlantic salmon) OX=8030				
_i3	1597	A0A1S3PP68	GN=LOC106586574 PE=4 SV=1	2E-093	751	207/217	95,39%

1	2	3	4	5	6	7	8
			gamma-aminobutyric acid type B receptor subunit				
			1-like isoform X1 OS=Salmo salar (Atlantic				
TRINITY_DN3238_c0_g1			salmon) OX=8030 GN=LOC106605218 PE=4				
i2	5266	A0A1S3RW62	SV=1	0	4092	834/836	99,76%
TRINITY_DN3212_c0_g1			Annexin OS=Salmo salar (Atlantic salmon)				
i4	1465	B5XAE0	OX=8030 GN=ANXA5 PE=2 SV=1	0	1569	301/317	94,95%
TRINITY_DN3255_c0_g1							
_i1	708	no hits					
			LRRcap domain-containing protein OS=Salmo				
TRINITY_DN12573_c0_g			salar (Atlantic salmon) OX=8030				
1_i2	2718	A0A1S3RDH0	GN=LOC106602332 PE=4 SV=1	3E-023	255	58/92	63,04%
			disintegrin and metalloproteinase domain-				
			containing protein 19-like isoform X1 OS=Salmo				
TRINITY_DN1736_c1_g1			salar (Atlantic salmon) OX=8030	0,000000			
_i1	894	A0A1S3SW29	GN=LOC106612150 PE=4 SV=1	4	124	24/29	82,76%
TRINITY_DN1703_c0_g1							
i3	735	no hits					
			Protein kinase domain-containing protein				
TRINITY_DN1708_c5_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i8	3740	A0A1S3MR17	GN=LOC106574304 PE=3 SV=1	0	1826	340/348	97,70%
			uncharacterized protein LOC106609042				
TRINITY_DN1763_c1_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i1	2132	A0A1S3SET2	GN=LOC106609042 PE=4 SV=1	0,00001	117	24/33	72,73%

1	2	3	4	5	6	7	8
			kazrin-like isoform X1 OS=Salmo salar (Atlantic				
TRINITY_DN1773_c0_g1			salmon) OX=8030 GN=LOC106572161 PE=4				
_i2	2897	A0A1S3MED9	SV=1	4E-144	1159	264/267	98,88%
			Olfactomedin-like domain-containing protein				
TRINITY_DN1728_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
	1141	A0A1S3NLM1	GN=LOC100196865 PE=4 SV=1	2E-065	549	127/138	92,03%
			protein phosphatase 1 regulatory subunit 1C-like				
TRINITY_DN27488_c0_g			OS=Salmo salar (Atlantic salmon) OX=8030				
1_i1	1581	A0A1S3PNM8	GN=LOC106586467 PE=4 SV=1	3E-090	703	138/148	93,24%
			zinc finger protein ZIC 4-like OS=Salmo salar				
TRINITY_DN2868_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106611728				
_i3	2781	A0A1S3STN8	PE=4 SV=1	0	2692	501/533	94,00%
TRINITY_DN2813_c0_g3							
_i1	1079	no hits					
			vesicle-fusing ATPase isoform X1 OS=Salmo				
TRINITY_DN2876_c2_g1			salar (Atlantic salmon) OX=8030 GN=nsf PE=4				
_i8	3589	A0A1S3R6Y0	SV=1	0	3644	729/747	97,59%
			FYVE-type domain-containing protein OS=Salmo				
TRINITY_DN6159_c0_g1			salar (Atlantic salmon) OX=8030				
_i3	4047	A0A1S3KYW5	GN=LOC106562918 PE=4 SV=1	0	2768	606/671	90,31%

*Query - исследуемая последовательность, **Hit - совпадение, ***Score - оценка качества совпадения

	Query				Score		
Query name:	length:	Hit name:	Hit description:	E-value:	:	Identity:	Pct Idn:
1	2	3	4	5	6	7	8
TRINITY_DN6915_c0_g		A0A1S3PUL	ETS domain-containing protein OS=Salmo salar (Atlantic				
2_i4	4040	7	salmon) OX=8030 GN=LOC106587480 PE=3 SV=1	5E-173	1326	255/269	94,80%
			cell adhesion molecule 4-like isoform X1 OS=Salmo salar				
TRINITY_DN5235_c0_g		A0A1S3N7A	(Atlantic salmon) OX=8030 GN=LOC106577561 PE=4				
1_i6	3620	8	SV=1	0	2026	403/455	88,57%
			cell adhesion molecule 4-like isoform X1 OS=Salmo salar				
TRINITY_DN5235_c0_g		A0A1S3N7A	(Atlantic salmon) OX=8030 GN=LOC106577561 PE=4				
<u>1_i1</u>	3160	8	SV=1	0	1860	356/397	89,67%
TRINITY_DN5253_c0_g		A0A1S3KM	Coronin OS=Salmo salar (Atlantic salmon) OX=8030				
<u>1_i1</u>	2649	82	GN=coro2b PE=3 SV=1	0	1691	319/338	94,38%
			MFS_1_like domain-containing protein OS=Salmo salar				
TRINITY_DN5275_c0_g		A0A1S3MV	(Atlantic salmon) OX=8030 GN=LOC106575218 PE=4				
1_i7	3866	C0	SV=1	0	3317	750/811	92,48%
TRINITY_DN2323_c0_g			C1q domain-containing protein OS=Salmo salar (Atlantic				
	1594	C0HBS7	salmon) OX=8030 GN=C1QB PE=2 SV=1	1E-112	858	196/238	82,35%
			Exonuclease domain-containing protein OS=Salmo salar				
TRINITY_DN2319_c5_g		A0A1S3QVF	(Atlantic salmon) OX=8030 GN=LOC106596922 PE=4				
<u>1_i1</u>	1073	7	SV=1	2E-126	929	178/214	83,18%
			cyclin-dependent kinase inhibitor 1-like isoform X1				
TRINITY_DN2374_c0_g		A0A1S3MY	OS=Salmo salar (Atlantic salmon) OX=8030				
1_i5	4032	S3	GN=LOC106576064 PE=4 SV=1	4E-111	895	174/218	79,82%
TRINITY_DN2306_c1_g		A0A1S3QR2	complement factor H-like OS=Salmo salar (Atlantic				
2_i1	3567	0	salmon) OX=8030 GN=LOC106595673 PE=4 SV=1	0	2967	568/822	69,10%

1	2	3	4	5	6	7	8
TRINITY_DN2306_c1_g2		A0A1S3QR2	complement factor H-like OS=Salmo salar (Atlantic				
_i2	3741	0	salmon) OX=8030 GN=LOC106595673 PE=4 SV=1	0	3326	616/822	74,94%
TRINITY_DN2365_c0_g1							
_i5	639	no hits					
			G_PROTEIN_RECEP_F1_2 domain-containing protein				
TRINITY_DN2365_c0_g1		A0A1S3KLB	OS=Salmo salar (Atlantic salmon) OX=8030 GN=gpr17				
_i8	1589	3	PE=4 SV=1	0	1658	330/347	95,10%
TRINITY_DN2357_c0_g1							
_i10	2461	no hits					
TRINITY_DN35935_c0_g		A0A1S3QK	contactin-1-like OS=Salmo salar (Atlantic salmon)			993/102	
1_i1	3735	C5	OX=8030 GN=LOC106593403 PE=4 SV=1	0	5327	4	96,97%
TRINITY_DN35935_c0_g		A0A1S3QK	contactin-1-like OS=Salmo salar (Atlantic salmon)			991/102	
1_i3	4045	C5	OX=8030 GN=LOC106593403 PE=4 SV=1	0	5313	2	96,97%
			pre-mRNA-splicing regulator WTAP-like isoform X1				
TRINITY_DN249_c0_g1_		A0A1S3S9H	OS=Salmo salar (Atlantic salmon) OX=8030				
i5	4801	4	GN=LOC106607973 PE=4 SV=1	7E-135	1092	258/268	96,27%
TRINITY_DN285_c0_g2_			SUI1 domain-containing protein OS=Salmo salar (Atlantic				100,00
i8	1884	B5X7T5	salmon) OX=8030 GN=EIF1B PE=2 SV=1	2E-062	516	113/113	%
			scaffold attachment factor B2-like isoform X1 OS=Salmo				
TRINITY_DN266_c0_g1_		A0A1S3MM	salar (Atlantic salmon) OX=8030 GN=LOC106573542				
i7	3259	V4	PE=4 SV=1	0	2649	728/870	83,68%
TRINITY_DN223_c0_g1_		A0A1S3NU	DH domain-containing protein OS=Salmo salar (Atlantic				
i11	4779	N8	salmon) OX=8030 GN=LOC106581424 PE=4 SV=1	0	4424	957/991	96,57%

1	2	3	4	5	6	7	8
			uncharacterized protein LOC106563755 OS=Salmo salar				
TRINITY_DN294_c0_g1_		A0A1S3L29	(Atlantic salmon) OX=8030 GN=LOC106563755 PE=4				
i5	2093	8	SV=1	0	1391	267/297	89,90%
			uncharacterized protein LOC106583163 OS=Salmo salar				
TRINITY_DN234_c0_g3_		A0A1S3P4E	(Atlantic salmon) OX=8030 GN=LOC106583163 PE=4				
i1	2340	6	SV=1	3E-116	911	189/329	57,45%
			uncharacterized protein LOC106579241 OS=Salmo salar				
TRINITY_DN247_c1_g1_		A0A1S3NH1	(Atlantic salmon) OX=8030 GN=LOC106579241 PE=4				
i3	1735	0	SV=1	0	1459	322/510	63,14%
TRINITY_DN222_c2_g1_							
i5	1574	no hits					
TRINITY_DN209_c0_g1_		A0A1S3LT0	Secretory carrier-associated membrane protein OS=Salmo				
i2	3828	8	salar (Atlantic salmon) OX=8030 GN=scamp1 PE=3 SV=1	3E-171	1317	336/339	99,12%
			PARP catalytic domain-containing protein OS=Salmo salar				
TRINITY_DN16498_c0_g		A0A1S3L6T	(Atlantic salmon) OX=8030 GN=LOC106564586 PE=4				
1_i2	1141	7	SV=1	2E-038	357	78/134	58,21%
			Endo/exonuclease/phosphatase domain-containing protein				
TRINITY_DN11874_c1_g		A0A1S3MX	OS=Salmo salar (Atlantic salmon) OX=8030				
1_i5	6027	00	GN=LOC106575617 PE=4 SV=1	4E-022	258	77/269	28,62%
TRINITY_DN2442_c1_g1		A0A1S3KL8	ceruloplasmin OS=Salmo salar (Atlantic salmon)			1072/11	
_i8	4042	3	OX=8030 GN=cp PE=3 SV=1	0	5425	30	94,87%
			Ig-like domain-containing protein OS=Salmo salar				
TRINITY_DN2491_c0_g1		A0A1S3LC5	(Atlantic salmon) OX=8030 GN=LOC100136577 PE=4				
_i7	1342	5	SV=1	7E-131	971	214/247	86,64%

1	2	3	4	5	6	7	8
			Ig-like domain-containing protein OS=Salmo salar				
TRINITY_DN2491_c0_g	10-0	AUAIS3R4H	(Atlantic salmon) OX=8030 GN=LOC106600246 PE=4		0.70	100/01/	o - - oou
1_i9	1878	1	SV=1	6E-127	959	189/216	87,50%
			uncharacterized protein LOC106583755 OS=Salmo salar				
TRINITY_DN7916_c0_g			(Atlantic salmon) OX=8030 GN=LOC106583755 PE=4				
1_i1	2123	A0A1S3P895	SV=1	0	2259	432/487	88,71%
			Transforming growth factor-beta-induced protein ig-h3				
TRINITY_DN10968_c0_		A0A1S2X0R	precursor OS=Salmo salar (Atlantic salmon) OX=8030				
	2753	2	GN=bgh3 PE=4 SV=1	0	3441	650/677	96,01%
			G_PROTEIN_RECEP_F1_2 domain-containing protein				
TRINITY_DN10997_c0_		A0A1S3MS	OS=Salmo salar (Atlantic salmon) OX=8030				
	989	U6	GN=LOC106574739 PE=3 SV=1	7E-062	516	116/119	97,48%
			sialic acid-binding Ig-like lectin 16 OS=Salmo salar				
TRINITY DN6653 c0 g		A0A1S3NAT	(Atlantic salmon) OX=8030 GN=LOC106578237 PE=4				
1_i2	1823	7	SV=1	2E-175	1287	276/305	90,49%
TRINITY_DN30170_c0_		A0A1S3SYI	thymus-specific serine protease isoform X1 OS=Salmo				
g1_i5	2511	6	salar (Atlantic salmon) OX=8030 GN=prss16 PE=4 SV=1	0	2408	471/512	91,99%
			Ig-like domain-containing protein OS=Salmo salar				
TRINITY_DN2639_c1_g		A0A1S3RP5	(Atlantic salmon) OX=8030 GN=LOC106603908 PE=4				
2_i3	1521	7	SV=1	5E-131	979	218/262	83,21%
TRINITY_DN2666_c0_g			Ubiquitin OS=Salmo salar (Atlantic salmon) OX=8030				
2_i3	982	B5X0Z7	GN=UBIQ PE=2 SV=1	1E-102	779	155/169	91,72%
TRINITY_DN2608_c0_g			Cathepsin K OS=Salmo salar (Atlantic salmon) OX=8030				
3_i2	3071	B5X425	GN=CATK PE=2 SV=1	0	1577	303/316	95,89%
TRINITY_DN2608_c0_g			Cathepsin K OS=Salmo salar (Atlantic salmon) OX=8030				
3_i1	3077	B5X425	GN=CATK PE=2 SV=1	0	1577	303/316	95,89%
					1		i
----------------------	------	------------	--	--------	------	---------	--------
1	2	3	4	5	6	7	8
TRINITY_DN2675_c0_g1			Protein S100 OS=Salmo salar (Atlantic salmon) OX=8030				
_i14	970	B5XFM2	GN=S10A4 PE=2 SV=1	4E-058	465	94/120	78,33%
			calcium-binding protein 2-like isoform X1 OS=Salmo salar				
TRINITY_DN2631_c1_g1		A0A1S3L7A	(Atlantic salmon) OX=8030 GN=LOC106564675 PE=4				
_i1	2762	5	SV=1	7E-179	1346	289/334	86,53%
TRINITY_DN21174_c0_g			Tetraspanin OS=Salmo salar (Atlantic salmon) OX=8030				
1_i3	1707	C0H8F4	GN=TSN8 PE=2 SV=1	4E-132	994	218/280	77,86%
			SRCR domain-containing protein OS=Salmo salar				
TRINITY_DN5614_c0_g1		A0A1S3NX	(Atlantic salmon) OX=8030 GN=LOC106582060 PE=4				
_i1	2057	V2	SV=1	3E-152	1155	356/412	86,41%
			SRCR domain-containing protein OS=Salmo salar				
TRINITY_DN5614_c0_g1		A0A1S3NX	(Atlantic salmon) OX=8030 GN=LOC106582060 PE=4				
_i2	1866	V2	SV=1	0	1372	391/448	87,28%
			ELM2 and SANT domain-containing protein 1 isoform X1				
TRINITY_DN3376_c0_g1		A0A1S3RF2	OS=Salmo salar (Atlantic salmon) OX=8030 GN=elmsan1				
_i2	3966	4	PE=4 SV=1	0	1623	320/349	91,69%
			leucine zipper protein 2-like isoform X1 OS=Salmo salar				
TRINITY_DN3305_c1_g1			(Atlantic salmon) OX=8030 GN=LOC106587094 PE=4				
_i2	3450	A0A1S3PTJ0	SV=1	0	1421	319/332	96,08%
TRINITY_DN3313_c0_g1		A0A1S3P6L	teashirt homolog 1-like OS=Salmo salar (Atlantic salmon)				
_i10	7636	5	OX=8030 GN=LOC106583507 PE=4 SV=1	0	3683	807/883	91,39%
			endothelin-converting enzyme 1-like OS=Salmo salar				
TRINITY_DN11287_c0_g		A0A1S3P3E	(Atlantic salmon) OX=8030 GN=LOC106582992 PE=4				
1_i1	3375	6	SV=1	0	3839	741/752	98,54%

					1		i
1	2	3	4	5	6	7	8
			X-linked retinitis pigmentosa GTPase regulator-interacting				
TRINITY_DN11291_c0_g		A0A1S3QM	protein 1-like OS=Salmo salar (Atlantic salmon) OX=8030				
3_i1	2229	R1	GN=LOC106594177 PE=4 SV=1	5E-010	111	19/29	65,52%
			endonuclease domain-containing 1 protein-like OS=Salmo				
TRINITY_DN7611_c0_g2		A0A1S3RRF	salar (Atlantic salmon) OX=8030 GN=LOC106604607				
_i2	2087	6	PE=4 SV=1	2E-105	830	163/279	58,42%
TRINITY_DN23812_c0_g			Cytochrome c oxidase subunit 3 OS=Salmo salar (Atlantic				
1_i1	303	I6NV08	salmon) OX=8030 GN=COX3 PE=3 SV=1	2E-057	452	88/97	90,72%
TRINITY_DN4281_c0_g1			Legumain OS=Salmo salar (Atlantic salmon) OX=8030				
i2	1944	C0H9C5	GN=LGMN PE=2 SV=1	0	1978	372/418	89,00%
TRINITY_DN4259_c0_g1		A0A1S3KJD	protein CYR61 OS=Salmo salar (Atlantic salmon)				
	1893	4	OX=8030 GN=cyr61 PE=4 SV=1	0	1747	358/372	96,24%
			syntaxin-binding protein 1 isoform X1 OS=Salmo salar				
TRINITY_DN4243_c0_g1		A0A1S3LLU	(Atlantic salmon) OX=8030 GN=LOC106567272 PE=3				
_i5	4701	7	SV=1	0	3119	602/603	99,83%
			syntaxin-binding protein 1 isoform X1 OS=Salmo salar				
TRINITY_DN4243_c0_g1		A0A1S3LLU	(Atlantic salmon) OX=8030 GN=LOC106567272 PE=3				
_i1	4242	7	SV=1	0	2602	498/500	99,60%
TRINITY_DN5140_c0_g2		A0A1S3REX	TBC1 domain family member 9 OS=Salmo salar (Atlantic				
_i2	6093	4	salmon) OX=8030 GN=tbc1d9 PE=4 SV=1	0	4812	920/942	97,66%
			Transmembrane 9 superfamily member OS=Salmo salar				
TRINITY_DN5171_c0_g1		A0A1S3LHA	(Atlantic salmon) OX=8030 GN=LOC106566422 PE=3				
_i3	4194	2	SV=1	0	2982	628/647	97,06%
TRINITY_DN5119_c0_g1		A0A1S3MT	IG domain-containing protein OS=Salmo salar (Atlantic				
_i13	4034	X2	salmon) OX=8030 GN=LOC106574728 PE=4 SV=1	3E-126	1008	203/241	84,23%

1	2	3	4	5	6	7	8
TRINITY_DN45940_c0_g		A0A1S3MP	TLDc domain-containing protein OS=Salmo salar (Atlantic				
1_i2	2966	V3	salmon) OX=8030 GN=LOC106573920 PE=4 SV=1	0	1436	267/287	93,03%
TRINITY_DN1583_c1_g1							
_i5	1258	no hits					
TRINITY_DN1512_c0_g1			protein lifeguard 4-like OS=Salmo salar (Atlantic salmon)				
_i9	3320	A0A1S3SJ29	OX=8030 GN=LOC106609847 PE=3 SV=1	4E-109	868	168/172	97,67%
TRINITY_DN1512_c0_g1			protein lifeguard 4-like OS=Salmo salar (Atlantic salmon)				
i14	3898	A0A1S3SJ29	OX=8030 GN=LOC106609847 PE=3 SV=1	5E-108	868	168/172	97,67%
TRINITY_DN1541_c0_g1			DNA-directed RNA polymerase subunit beta OS=Salmo				
_i3	5291	C0HA74	salar (Atlantic salmon) OX=8030 GN=RPB2 PE=2 SV=1	0	4877	934/935	99,89%
			Ig-like domain-containing protein OS=Salmo salar				
TRINITY_DN1556_c0_g1		A0A1S3SUG	(Atlantic salmon) OX=8030 GN=LOC106611879 PE=4				
i4	1490	6	SV=1	1E-076	620	138/280	49,29%
			uncharacterized protein LOC106606767 OS=Salmo salar				
TRINITY_DN1538_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106606767 PE=4				
i4	3302	A0A1S3S2I3	SV=1	3E-156	1277	272/472	57,63%
			uncharacterized protein LOC106606767 OS=Salmo salar				
TRINITY_DN1538_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106606767 PE=4				
i9	3551	A0A1S3S2I3	SV=1	6E-156	1282	272/472	57,63%
			uncharacterized protein LOC106606767 OS=Salmo salar				
TRINITY_DN1538_c0_g1			(Atlantic salmon) OX=8030 GN=LOC106606767 PE=4				
_i10	1800	A0A1S3S2I3	SV=1	4E-100	846	179/337	53,12%
TRINITY_DN1515_c1_g1		A0A1S3RBX	Claudin OS=Salmo salar (Atlantic salmon) OX=8030				
_i7	1692	9	GN=LOC106601946 PE=3 SV=1	2E-081	650	162/165	98,18%

1	2	3	4	5	6	7	8
TRINITY_DN1515_c1_g1		A0A1S3RBX	Claudin OS=Salmo salar (Atlantic salmon) OX=8030				
_i6	1381	9	GN=LOC106601946 PE=3 SV=1	1E-082	650	162/165	98,18%
			AIG1-type G domain-containing protein OS=Salmo salar				
TRINITY_DN1560_c0_g1		A0A1S3QQ	(Atlantic salmon) OX=8030 GN=LOC106595409 PE=4				
i12	823	C1	SV=1	4E-073	576	112/174	64,37%
			uncharacterized protein LOC100194683 OS=Salmo salar				
TRINITY_DN1555_c0_g1		A0A1S3Q8P	(Atlantic salmon) OX=8030 GN=LOC100194683 PE=4				
_i8	850	5	SV=1	2E-085	647	116/127	91,34%
			uncharacterized protein LOC100194683 OS=Salmo salar				
TRINITY_DN1555_c0_g1		A0A1S3Q8P	(Atlantic salmon) OX=8030 GN=LOC100194683 PE=4				
_i13	1708	5	SV=1	1E-098	760	137/150	91,33%
TRINITY_DN856_c1_g1_		A0A1S3R8A	Stathmin OS=Salmo salar (Atlantic salmon) OX=8030				
i8	5500	7	GN=stmn4 PE=3 SV=1	9E-113	913	179/184	97,28%
TRINITY_DN856_c1_g1_							
i7	4674	no hits					
			ras-related protein Rab-7a-like isoform X1 OS=Salmo salar				
TRINITY_DN880_c0_g1_		A0A1S3P4V	(Atlantic salmon) OX=8030 GN=LOC106583206 PE=4				
i2	2278	0	SV=1	1E-149	1121	208/210	99,05%
TRINITY_DN835_c0_g1_		A0A1S3RBB	PHD-type domain-containing protein OS=Salmo salar				
i27	1937	3	(Atlantic salmon) OX=8030 GN=g2e3 PE=4 SV=1	5E-014	186	43/142	30,28%
TRINITY_DN886_c2_g2_			Negative elongation factor D OS=Salmo salar (Atlantic				
i1 U	4425	B5X201	salmon) OX=8030 GN=NELFD PE=2 SV=1	0	1864	360/362	99,45%
TRINITY_DN806_c1_g1_							
i1	1588	no hits					

_							
1	2	3	4	5	6	7	8
			G-patch domain-containing protein OS=Salmo salar				
TRINITY_DN833_c0_g1_		A0A1S3R9L	(Atlantic salmon) OX=8030 GN=LOC106601128 PE=4				
i2	5462	2	SV=1	0	1917	543/614	88,44%
TRINITY_DN815_c1_g1_			Ig-like domain-containing protein OS=Salmo salar				
i3	1933	Q8HX44	(Atlantic salmon) OX=8030 GN=UBA PE=2 SV=1	7E-166	1232	255/350	72,86%
TRINITY_DN1814_c0_g1			Ubiquitin-conjugating enzyme E2 K OS=Salmo salar				
_i5	2256	B5XBH8	(Atlantic salmon) OX=8030 GN=UBE2K PE=2 SV=1	7E-128	973	195/200	97,50%
TRINITY_DN1878_c1_g1		A0A1S3MX	Phospholipid-transporting ATPase OS=Salmo salar			1330/13	
_i2	6342	L7	(Atlantic salmon) OX=8030 GN=atp8b2 PE=3 SV=1	0	6105	87	95,89%
			uncharacterized protein LOC106578090 isoform X1				
TRINITY_DN1899_c0_g1		A0A1S3NA7	OS=Salmo salar (Atlantic salmon) OX=8030				
_i1	1800	6	GN=LOC106578090 PE=4 SV=1	0,00003	103	25/48	52,08%
TRINITY_DN1862_c0_g1			Heme-binding protein 2 OS=Salmo salar (Atlantic salmon)				
_i4	1571	B5X719	OX=8030 GN=HEBP2 PE=2 SV=1	6E-146	1074	200/214	93,46%
TRINITY_DN1862_c0_g1			Heme-binding protein 2 OS=Salmo salar (Atlantic salmon)				
_i9	564	B5X719	OX=8030 GN=HEBP2 PE=2 SV=1	2E-057	456	83/88	94,32%
			C-Jun-amino-terminal kinase-interacting protein 1-like				
TRINITY_DN3565_c0_g1		A0A1S3PRU	isoform X1 OS=Salmo salar (Atlantic salmon) OX=8030				
_i5	2974	6	GN=LOC106587053 PE=4 SV=1	1E-095	824	151/154	98,05%
			aggrecan core protein-like isoform X1 OS=Salmo salar				
TRINITY_DN3575_c0_g1		A0A1S3NQ	(Atlantic salmon) OX=8030 GN=LOC106580754 PE=4				
_i8	4422	U5	SV=1	0	2021	435/508	85,63%
			B-cell receptor CD22-like isoform X1 OS=Salmo salar				
TRINITY_DN3538_c0_g1		A0A1S3NA9	(Atlantic salmon) OX=8030 GN=LOC106578256 PE=4				
i1	2342	6	SV=1	0	1712	345/380	90,79%

1	2	3	4	5	6	7	8
			autism susceptibility gene 2 protein-like isoform X1				
TRINITY_DN5550_c0_g1		A0A1S3PG0	OS=Salmo salar (Atlantic salmon) OX=8030				
_i7	4953	9	GN=LOC106585083 PE=4 SV=1	0	2850	837/991	84,46%
TRINITY_DN31016_c0_g		A0A1S3NW	ermin OS=Salmo salar (Atlantic salmon) OX=8030				
2_i1	1839	A0	GN=ermn PE=4 SV=1	4E-175	1284	261/304	85,86%
TRINITY_DN8029_c0_g1							
_i2	1658	no hits					
			C-type lectin domain-containing protein OS=Salmo salar				
TRINITY_DN8095_c0_g1			(Atlantic salmon) OX=8030 GN=LOC100136446 PE=2				
_i1	2700	Q68S98	SV=1	3E-169	1267	237/255	92,94%
			coiled-coil domain-containing protein 136-like isoform X1				
TRINITY_DN2763_c3_g1		A0A1S3MJ9	OS=Salmo salar (Atlantic salmon) OX=8030				
_i2	3600	6	GN=LOC106573051 PE=4 SV=1	9E-013	124	25/28	89,29%
			Down syndrome cell adhesion molecule-like OS=Salmo				
TRINITY_DN2729_c0_g1		A0A1S3RU	salar (Atlantic salmon) OX=8030 GN=LOC106604927				
_i11	1849	M1	PE=4 SV=1	0	2024	440/492	89,43%
TRINITY_DN2790_c2_g2		A0A1S3M7E	C-C motif chemokine OS=Salmo salar (Atlantic salmon)				
_i1	1081	3	OX=8030 GN=LOC106570861 PE=3 SV=1	3E-058	469	87/114	76,32%
TRINITY_DN2717_c0_g2							
_i1	2841	no hits					
TRINITY_DN2716_c0_g1		A0A1S3P8A	Transporter OS=Salmo salar (Atlantic salmon) OX=8030				
_i2	2574	2	GN=slc6a1 PE=3 SV=1	0	2997	597/601	99,33%
			uncharacterized protein LOC106588302 OS=Salmo salar				
TRINITY_DN2736_c0_g1		A0A1S3PY3	(Atlantic salmon) OX=8030 GN=LOC106588302 PE=4				
_i3	2452	6	SV=1	5E-060	529	129/230	56,09%

1	2	3	4	5	6	7	8
			uncharacterized protein LOC106588302 OS=Salmo salar				
TRINITY_DN2736_c0_g2		A0A1S3PY3	(Atlantic salmon) OX=8030 GN=LOC106588302 PE=4				
_i2	2343	6	SV=1	2E-055	495	127/233	54,51%
			Serine/threonine-protein kinase SBK1 OS=Salmo salar				
TRINITY_DN2709_c1_g1		A0A1S3RBN	(Atlantic salmon) OX=8030 GN=LOC106601460 PE=3				
_i1	1814	9	SV=1	0	1638	361/375	96,27%
TRINITY_DN9972_c0_g1		A0A1S3NR	MIT domain-containing protein OS=Salmo salar (Atlantic				
_i4	2584	K6	salmon) OX=8030 GN=LOC106580974 PE=4 SV=1	0	2840	568/605	93,88%
TRINITY_DN9965_c0_g1			60S ribosomal protein L18a OS=Salmo salar (Atlantic				
_i1	1414	O57561	salmon) OX=8030 GN=rpl18a PE=2 SV=1	1E-126	938	171/176	97,16%
			Epimerase_2 domain-containing protein OS=Salmo salar				
TRINITY_DN9288_c0_g1		A0A1S3REP	(Atlantic salmon) OX=8030 GN=LOC106602595 PE=4				
_i6	4456	7	SV=1	0	3801	730/757	96,43%
			sodium/calcium exchanger 2-like isoform X1 OS=Salmo				
TRINITY_DN9216_c0_g2		A0A1S3RLL	salar (Atlantic salmon) OX=8030 GN=LOC106603691				
_i4	3116	8	PE=3 SV=1	0	2217	439/462	95,02%
TRINITY_DN4410_c0_g1							
_i3	1136	no hits					
TRINITY_DN4415_c0_g1							
_i5	1197	no hits					
			uncharacterized protein LOC106588302 OS=Salmo salar				
TRINITY_DN8711_c0_g1		A0A1S3PY3	(Atlantic salmon) OX=8030 GN=LOC106588302 PE=4				
_i4	1789	6	SV=1	2E-030	308	64/122	52,46%

1	2	3	4	5	6	7	8
			Guanylate cyclase domain-containing protein OS=Salmo				
TRINITY_DN8775_c0_g1		A0A1S3RSS	salar (Atlantic salmon) OX=8030 GN=LOC106604839				
_i11	2321	5	PE=4 SV=1	0	2061	406/427	95,08%
			Fork-head domain-containing protein OS=Salmo salar				
TRINITY_DN1293_c0_g2			(Atlantic salmon) OX=8030 GN=LOC106606962 PE=4				
i2	5078	A0A1S3S3J0	SV=1	0	2299	467/484	96,49%
TRINITY_DN1246_c1_g1		A0A1S3N0R	Sulfotransferase OS=Salmo salar (Atlantic salmon)				
_i6	3225	0	OX=8030 GN=LOC106576158 PE=3 SV=1	0	1512	280/284	98,59%
TRINITY_DN1237_c3_g1			GLOBIN domain-containing protein OS=Salmo salar				
_i2	427	B5X746	(Atlantic salmon) OX=8030 GN=HBA4 PE=2 SV=1	2E-088	648	120/126	95,24%
			BCL2/adenovirus E1B 19 kDa protein-interacting protein				
TRINITY_DN1287_c0_g1		A0A1S3N5T	3-like isoform X1 OS=Salmo salar (Atlantic salmon)				
_i9	1462	8	OX=8030 GN=LOC106577374 PE=4 SV=1	2E-141	1048	241/292	82,53%
			Fibrinogen C-terminal domain-containing protein				
TRINITY_DN1286_c0_g2		A0A1S3Q07	OS=Salmo salar (Atlantic salmon) OX=8030				
_i2	2548	5	GN=LOC106588634 PE=4 SV=1	3E-161	1218	228/331	68,88%
			Na(+)/H(+) exchange regulatory cofactor NHE-RF				
TRINITY_DN1243_c0_g1			OS=Salmo salar (Atlantic salmon) OX=8030				
_i3	2692	A0A1S3S415	GN=LOC106606975 PE=4 SV=1	0	1723	358/378	94,71%
			UPAR/Ly6 domain-containing protein OS=Salmo salar				
TRINITY_DN1239_c0_g1		A0A1S3N9A	(Atlantic salmon) OX=8030 GN=LOC106578012 PE=4				
i4	1339	4	SV=1	5E-119	890	187/230	81,30%
TRINITY_DN1239_c0_g2							
_i1	415	no hits					

1	2	3	4	5	6	7	8
TRINITY_DN93342_c0_g			Serine/threonine-protein kinase OS=Salmo salar (Atlantic				
1_i1	2685	B5X0V3	salmon) OX=8030 GN=PIM1 PE=2 SV=1	0	1445	304/311	97,75%
TRINITY_DN23028_c0_g							
1_i1	587	no hits					
TRINITY_DN12685_c0_g		A0A1S3LVI	amphiphysin isoform X1 OS=Salmo salar (Atlantic				
1_i6	3702	3	salmon) OX=8030 GN=amph PE=4 SV=1	0	1938	510/563	90,59%
			SRCR domain-containing protein OS=Salmo salar				
TRINITY_DN3874_c0_g1		A0A1S3T45	(Atlantic salmon) OX=8030 GN=LOC106613533 PE=4				
_i5	2300	6	SV=1	0	2785	549/584	94,01%
TRINITY_DN4872_c0_g1							
_i12	1402	no hits					
TRINITY_DN4870_c2_g1		A0A1S3N11	zinc-binding protein A33-like OS=Salmo salar (Atlantic				
_i3	2348	4	salmon) OX=8030 GN=LOC106576442 PE=4 SV=1	0	2094	405/454	89,21%
TRINITY_DN4838_c5_g1							
_i2	1890	no hits					
TRINITY_DN6791_c1_g1							
_i2	1802	no hits					
TRINITY_DN6744_c1_g1		A0A1S3MW	Gap junction protein OS=Salmo salar (Atlantic salmon)				
_i2	2594	X2	OX=8030 GN=LOC106575602 PE=3 SV=1	4E-135	1051	229/242	94,63%
TRINITY_DN1403_c3_g1			Transmembrane channel-like protein OS=Salmo salar				
_i8	2523	C0H8Z3	(Atlantic salmon) OX=8030 GN=TMC7 PE=2 SV=1	0	1927	381/415	91,81%
TRINITY_DN1427_c0_g2		A0A1S3Q4Q	KH domain-containing protein OS=Salmo salar (Atlantic				
_i4	1534	2	salmon) OX=8030 GN=LOC106589438 PE=4 SV=1	0	1657	310/316	98,10%

1	2	3	4	5	6	7	8
TRINITY_DN7166_c0_g1 _i4	2597	A0A1S3KS7 9	ras-GEF domain-containing family member 1B-B-like OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106561770 PE=4 SV=1	0	2511	471/479	98,33%
TRINITY_DN22782_c0_g 1_i1	1148	A0A1S3QB Y5	Fatty acid hydroxylase domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=msmo1 PE=3 SV=1	0	1503	276/288	95,83%
TRINITY_DN3140_c0_g2 _i10	3393	A0A1S3QN R5	tax1-binding protein 1 homolog B-like OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106594183 PE=4 SV=1	0	3771	791/894	88,48%
TRINITY_DN4162_c0_g2 _i3	2827	no hits					
TRINITY_DN4181_c0_g1 _i7	5270	A0A1S3N2G	uncharacterized protein LOC106576711 isoform X1 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106576711 PE=4 SV=1	2E-180	1521	333/351	94,87%
TRINITY_DN4174_c0_g1 _i5	2101	A0A1S3SW Z8	Gap junction protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106612324 PE=3 SV=1	0	1387	271/275	98,55%
TRINITY_DN4168_c0_g1 _i4	1818	A0A1S3QV2	Interfer-bind domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106597293 PE=4 SV=1	0,0000000 04	138	29/43	67,44%
TRINITY_DN4103_c0_g1 _i1	1440	A0A1S3MP8 5	vascular cell adhesion protein 1 OS=Salmo salar (Atlantic salmon) OX=8030 GN=vcam1 PE=4 SV=1	0	1714	319/343	93,00%
TRINITY_DN12066_c0_g 1_i2	4366	A0A1S3QSF	macrophage mannose receptor 1-like OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106596213 PE=4 SV=1	0	3978	782/931	84,00%

1	2	3	4	5	6	7	8
TRINITY_DN5062_c0_g1 _i4	5205	A0A1S3SD8	fragile X mental retardation syndrome-related protein 1- like isoform X1 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106608729 PE=4 SV=1	0	3011	669/682	98,09%
TRINITY_DN5062_c0_g1 _i1	4806	A0A1S3SD8 4	fragile X mental retardation syndrome-related protein 1- like isoform X1 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106608729 PE=4 SV=1	0	2999	666/682	97,65%
TRINITY_DN5069_c0_g1 _i2	3892	A0A1S3SUF 5	macrophage colony-stimulating factor 1 receptor 1-like isoform X2 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106611874 PE=3 SV=1	0	4895	955/101 4	94,18%
TRINITY_DN8531_c0_g1 _i1	1762	A0A1S3N82 8	Perilipin OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC100380740 PE=3 SV=1	0	2016	402/423	95,04%
TRINITY_DN19695_c1_g 1_i1	1076	A0A1S3MD Z5	SCP domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106572096 PE=3 SV=1	1E-163	1186	229/265	86,42%
TRINITY_DN1122_c0_g1 _i4	1573	A0A1S3LC5 8	Ig-like domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106565699 PE=4 SV=1	3E-135	1013	211/237	89,03%
TRINITY_DN1155_c0_g1 _i2	9108	A0A1S3KZ1 8	Poly [ADP-ribose] polymerase OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106563179 PE=4 SV=1	0	4556	910/102 6	88,69%
TRINITY_DN1173_c0_g1 _i11	3175	A0A1S3MM A5	protein NDRG4 isoform X1 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106573649 PE=4 SV=1	0	1963	374/382	97,91%
TRINITY_DN1154_c0_g1 _i5	3382	A0A1S3L22	Fibronectin type-III domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106563690 PE=4 SV=1	0	1490	302/351	86,04%
TRINITY_DN1139_c0_g1 _i7	1534	A0A1S3SF2 7	Sema domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106609081 PE=3 SV=1	0,000001	120	25/38	65,79%

1	2	3	4	5	6	7	8
			butyrophilin-like protein 2 isoform X1 OS=Salmo salar				
TRINITY_DN1139_c0_g1		A0A1S3P5W	(Atlantic salmon) OX=8030 GN=LOC106583397 PE=4				
_i9	1816	0	SV=1	3E-122	955	179/214	83,64%
			fumarate hydratase, mitochondrial-like OS=Salmo salar				
TRINITY_DN5758_c0_g2		A0A1S3SQ2	(Atlantic salmon) OX=8030 GN=LOC106611092 PE=3				
_i4	2533	5	SV=1	0	2560	488/504	96,83%
TRINITY_DN9759_c0_g1			Ig-like domain-containing protein OS=Salmo salar				
_i2	1214	Q8HX44	(Atlantic salmon) OX=8030 GN=UBA PE=2 SV=1	6E-178	1287	276/355	77,75%
TRINITY_DN9759_c0_g2			Ig-like domain-containing protein OS=Salmo salar				
_i1	1181	D0UGC7	(Atlantic salmon) OX=8030 GN=Sasa-UGA PE=3 SV=1	3E-136	1012	185/233	79,40%
			interferon-induced very large GTPase 1-like isoform X1				
TRINITY_DN18290_c0_g		A0A1S3SDN	OS=Salmo salar (Atlantic salmon) OX=8030			1314/15	
1_i3	5155	9	GN=LOC106608810 PE=4 SV=1	0	6952	63	84,07%
TRINITY_DN4365_c1_g1		A0A1S3MW	SH2 domain-containing protein OS=Salmo salar (Atlantic				
_i9	6653	R1	salmon) OX=8030 GN=LOC106575567 PE=4 SV=1	0	2837	613/678	90,41%
TRINITY_DN2251_c0_g1			T-complex protein 1 subunit beta OS=Salmo salar (Atlantic				
_i4	2435	B5X2M8	salmon) OX=8030 GN=TCPB PE=2 SV=1	0	2615	531/535	99,25%
TRINITY_DN2200_c0_g1			GLOBIN domain-containing protein OS=Salmo salar				
_i1	726	B5X5E4	(Atlantic salmon) OX=8030 GN=HBB1 PE=2 SV=1	4E-103	757	140/147	95,24%
TRINITY_DN3417_c1_g1			Lysozyme OS=Salmo salar (Atlantic salmon) OX=8030				
_i2	1506	B5XA65	GN=LYSC2 PE=2 SV=1	1E-078	619	131/144	90,97%
TRINITY_DN177_c0_g1_			helicase MOV-10 OS=Salmo salar (Atlantic salmon)			936/102	
i3	4239	C0HAB8	OX=8030 GN=MOV10 PE=2 SV=1	0	4486	4	91,41%
TRINITY_DN115_c0_g1_		A0A1S3N33	Fibroblast growth factor receptor OS=Salmo salar (Atlantic				
i3	4664	8	salmon) OX=8030 GN=fgfr2 PE=3 SV=1	0	3959	820/846	96,93%

1	2	2	Λ	5		7	0
1	2	5	4	5	0	/	8
			BPTI/Kunitz inhibitor domain-containing protein				
TRINITY_DN143_c0_g1_		A0A1S3T36	OS=Salmo salar (Atlantic salmon) OX=8030 GN=aplp2				
i7	3194	5	PE=4 SV=1	0	1598	374/406	92,12%
			potassium channel subfamily T member 1-like OS=Salmo				
TRINITY_DN142_c0_g1_		A0A1S3NJ5	salar (Atlantic salmon) OX=8030 GN=LOC106579798			1030/10	
i3	7547	7	PE=4 SV=1	0	5197	69	96,35%
TRINITY_DN7277_c1_g2							
_i2	1694	no hits					
			ras-related protein O-Krev isoform X1 OS=Salmo salar				
TRINITY_DN7218_c0_g1		A0A1S3LLE	(Atlantic salmon) OX=8030 GN=LOC106567206 PE=4				
_i2	1972	3	SV=1	3E-110	846	175/184	95,11%
			GRANULINS domain-containing protein OS=Salmo salar				
TRINITY_DN15288_c0_g		A0A1S3Q23	(Atlantic salmon) OX=8030 GN=LOC106588950 PE=4				
1_i1	985	7	SV=1	3E-051	422	82/91	90,11%
			GRANULINS domain-containing protein OS=Salmo salar				
TRINITY_DN15288_c0_g		A0A1S3Q23	(Atlantic salmon) OX=8030 GN=LOC106588950 PE=4				
2_i1	1134	7	SV=1	2E-039	347	77/138	55,80%
TRINITY_DN15242_c0_g		A0A1S3NTU	ephexin-1 OS=Salmo salar (Atlantic salmon) OX=8030				
1_i2	3105	9	GN=ngef PE=4 SV=1	0	2808	602/640	94,06%
			uncharacterized protein LOC106595915 OS=Salmo salar				
TRINITY_DN11041_c0_g		A0A1S3QSS	(Atlantic salmon) OX=8030 GN=LOC106595915 PE=4				
1_i7	416	1	SV=1	1E-030	287	52/60	86,67%
TRINITY_DN2001_c0_g1		A0A1S3R6U	protein FAM171A2-like OS=Salmo salar (Atlantic salmon)				
_i10	5933	9	OX=8030 GN=LOC106600878 PE=4 SV=1	0	3573	860/912	94,30%

1	2	3	4	5	6	7	8
TRINITY_DN2062_c0_g2		A0A1S3P4H	RING-type domain-containing protein OS=Salmo salar				
_i2	3404	5	(Atlantic salmon) OX=8030 GN=dtx31 PE=4 SV=1	0	2197	477/812	58,74%
TRINITY_DN2014_c0_g1			BZIP domain-containing protein OS=Salmo salar (Atlantic				100,00
_i1	1486	B5X1F6	salmon) OX=8030 GN=CRBL2 PE=2 SV=1	1E-046	400	96/96	%
TRINITY_DN1348_c0_g2			Lysozyme g OS=Salmo salar (Atlantic salmon) OX=8030		ľ		
_i6	2204	B9ELT2	GN=LYG PE=2 SV=1	2E-097	779	163/193	84,46%
TRINITY_DN1399_c1_g1		A0A1S3LFX	Elp3 domain-containing protein OS=Salmo salar (Atlantic				
_i5	3720	2	salmon) OX=8030 GN=LOC106566099 PE=4 SV=1	0	1780	333/357	93,28%
TRINITY_DN1399_c1_g1			Elp3 domain-containing protein OS=Salmo salar (Atlantic				
_i4	2600	B5X991	salmon) OX=8030 GN=RSAD2 PE=2 SV=1	7E-035	345	65/66	98,48%
TRINITY_DN1399_c1_g1		A0A1S3LFX	Elp3 domain-containing protein OS=Salmo salar (Atlantic				
_i2	1584	2	salmon) OX=8030 GN=LOC106566099 PE=4 SV=1	0	1729	321/357	89,92%
			HECT domain-containing protein OS=Salmo salar				
TRINITY_DN1330_c0_g1		A0A1S3QG	(Atlantic salmon) OX=8030 GN=LOC106591921 PE=4				
i2	4196	U6	SV=1	0	2623	524/615	85,20%
			HECT domain-containing protein OS=Salmo salar				
TRINITY_DN1330_c0_g1		A0A1S3QG	(Atlantic salmon) OX=8030 GN=LOC106591921 PE=4				
_i15	4328	U6	SV=1	0	2623	524/615	85,20%
			HECT domain-containing protein OS=Salmo salar				
TRINITY_DN1330_c0_g1		A0A1S3QG	(Atlantic salmon) OX=8030 GN=LOC106591921 PE=4				
_i12	4146	U6	SV=1	0	2623	524/615	85,20%
TRINITY_DN1316_c0_g1		A0A1S3MS	POU domain protein OS=Salmo salar (Atlantic salmon)				1
_i4	4229	KO	OX=8030 GN=LOC106574614 PE=3 SV=1	0	1887	425/427	99,53%

1	2	3	4	5	6	7	8
TRINITY_DN2171_c0_g1			Thyroglobulin type-1 domain-containing protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=HG2A				
i2	1154	B5X6G6	PE=2 SV=1	2E-168	1214	237/279	84,95%
		40416200	AIG1-type G domain-containing protein OS=Salmo salar				
IRINITY_DN2139_c1_g1	775	AUAIS3QG	(Atlantic salmon) OX=8030 GN=LOC106592320 PE=4	7E 088	675	128/152	00 20%
	115	K9		/E-000	075	130/133	90,20%
_i2	2503	A0A1S3QPS 9	protein unc-93 homolog B1-like OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106594845 PE=4 SV=1	2E-100	800	209/216	96,76%
TRINITY_DN9079_c0_g1 _i2	2080	Q0ZHH3	TAP binding protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=TAPBP PE=2 SV=1	0	2145	419/442	94,80%
			interferon-induced helicase C domain-containing protein 1				
TRINITY_DN27105_c0_g		A0A1S3NW	isoform X2 OS=Salmo salar (Atlantic salmon) OX=8030				
1_i5	3238	49	GN=ifih1 PE=4 SV=1	0	3108	608/629	96,66%
TRINITY_DN34037_c0_g			GLOBIN domain-containing protein OS=Salmo salar				
1_i2	568	B5XE30	(Atlantic salmon) OX=8030 GN=HBA PE=2 SV=1	4E-092	678	137/143	95,80%
TRINITY_DN3090_c0_g1		A0A1S3KTB	Muscarinic acetylcholine receptor OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106561947 PE=3	0			
14	4275	8	SV=1	0	2452	507/531	95,48%
TRINITY_DN3090_c0_g1 _i2	4253	A0A1S3KTB 8	Muscarinic acetylcholine receptor OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106561947 PE=3 SV=1	0	2452	507/531	95,48%
TRINITY_DN3051_c0_g4							
_i1	1246	no hits					
TRINITY_DN3031_c0_g1							
_i2	3109	no hits					

1	2	3	Δ	5	6	7	8
1	2	5	uncharacterized protein LOC106600195 isoform X1	5	0	,	
TRINITY DN8127 c0 g1		A0A1S3R4C	OS-Salmo salar (Atlantic salmon) OX-8030				
i6	2434	5	GN=LOC106600195 PE=4 SV=1	0	2736	537/631	85,10%
			uncharacterized protein LOC106600195 isoform X1				
TRINITY DN9426 c0 g2		A0A1S3R4C	OS=Salmo salar (Atlantic salmon) OX=8030				
i2c	1990	5	GN=LOC106600195 PE=4 SV=1	0	2128	452/603	74,96%
TRINITY_DN26312_c0_g			Integrin beta OS=Salmo salar (Atlantic salmon) OX=8030				
1_i1	3568	C0H8X0	GN=ITB2 PE=2 SV=1	0	3499	704/777	90,60%
TRINITY_DN639_c0_g5_		A0A1S3N5T	proto-oncogene c-Rel-like OS=Salmo salar (Atlantic				
i1	3385	2	salmon) OX=8030 GN=LOC106577316 PE=4 SV=1	0	1403	321/424	75,71%
TRINITY_DN633_c5_g1_							
i11	1973	no hits					
TRINITY_DN622_c0_g1_			Cystathionine gamma-lyase OS=Salmo salar (Atlantic				
i3	2304	B5X1V6	salmon) OX=8030 GN=CGL PE=2 SV=1	0	1972	379/405	93,58%
TRINITY_DN641_c0_g1_			Tetraspanin OS=Salmo salar (Atlantic salmon) OX=8030				
i1	1310	B5X5A0	GN=CD53 PE=2 SV=1	8E-120	895	199/234	85,04%
TRINITY_DN615_c0_g1_		A0A1S3RN	catenin alpha-1 OS=Salmo salar (Atlantic salmon)				
i7	3948	U3	OX=8030 GN=ctnna1 PE=4 SV=1	0	3993	819/822	99,64%
			sodium/potassium/calcium exchanger 4-like isoform X1				
TRINITY_DN628_c0_g1_		A0A1S3RA	OS=Salmo salar (Atlantic salmon) OX=8030				
i2	6526	Y4	GN=LOC106601308 PE=3 SV=1	0	2944	590/621	95,01%
			Olfactomedin-like domain-containing protein OS=Salmo				
TRINITY_DN6428_c0_g1		A0A1S3KX	salar (Atlantic salmon) OX=8030 GN=LOC106562533				
_i4	3308	A9	PE=4 SV=1	0	1949	465/505	92,08%

i					1		1 1
1	2	3	4	5	6	7	8
TRINITY_DN17572_c0_g			TIR domain-containing protein OS=Salmo salar (Atlantic				
1_i4	7217	C4NAT1	salmon) OX=8030 GN=LOC100302030 PE=2 SV=1	0	4914	935/1035	90,34%
			BHLH domain-containing protein OS=Salmo salar				
TRINITY_DN5800_c0_g1		A0A1S3QZT	(Atlantic salmon) OX=8030 GN=LOC106599084 PE=4				
_i1	3441	1	SV=1	0	1596	329/362	90,88%
			BHLH domain-containing protein OS=Salmo salar				
TRINITY_DN5800_c0_g1		A0A1S3LW	(Atlantic salmon) OX=8030 GN=LOC106568924 PE=4				
_i2	3403	L5	SV=1	0	1438	330/362	91,16%
TRINITY_DN5855_c0_g1		A0A1S3RXT	apolipoprotein Eb-like OS=Salmo salar (Atlantic salmon)				
_i3	2252	3	OX=8030 GN=LOC106605689 PE=3 SV=1	2E-179	1328	281/317	88,64%
TRINITY_DN34391_c0_g			Hemoglobin subunit beta OS=Salmo salar (Atlantic				
1_i6	940	Q91473	salmon) OX=8030 GN=hbb PE=2 SV=3	7E-100	743	137/148	92,57%
			Matrin-type domain-containing protein OS=Salmo salar				
TRINITY_DN4774_c0_g1		A0A1S3SLT	(Atlantic salmon) OX=8030 GN=LOC106610436 PE=4				
_i10	3901	4	SV=1	0	1828	394/453	86,98%
TRINITY_DN4745_c0_g1			Secreted frizzled-related protein 1 OS=Salmo salar				
_i2	2474	B5X4P1	(Atlantic salmon) OX=8030 GN=SFRP1 PE=2 SV=1	0	1449	300/310	96,77%
TRINITY_DN587_c0_g1_		A0A1S3KSN	adenomatous polyposis coli protein isoform X1 OS=Salmo		1198		
i1	9564	6	salar (Atlantic salmon) OX=8030 GN=apc PE=4 SV=1	0	8	2653/2800	94,75%
			LOW QUALITY PROTEIN: jeltraxin-like OS=Salmo salar				
TRINITY_DN522_c0_g2_		A0A1S3KY	(Atlantic salmon) OX=8030 GN=LOC106563086 PE=4				
i3	1594	Q3	SV=1	2E-095	749	183/293	62,46%
			LOW QUALITY PROTEIN: jeltraxin-like OS=Salmo salar				
TRINITY_DN522_c0_g2_		A0A1S3KY	(Atlantic salmon) OX=8030 GN=LOC106563086 PE=4				
i4	1583	Q3	SV=1	1E-103	803	197/292	67,47%

1	2	3	4	5	6	7	8
TRINITY_DN588_c0_g1_			Neuromodulin_N domain-containing protein OS=Salmo				
i2	2370	B5X0W5	salar (Atlantic salmon) OX=8030 GN=NEUM PE=2 SV=1	7E-080	657	222/251	88,45%
			myelin-associated glycoprotein-like isoform X1 OS=Salmo				
TRINITY_DN523_c1_g1_		A0A1S3P0F	salar (Atlantic salmon) OX=8030 GN=LOC106582469				
i4	3452	9	PE=4 SV=1	1E-111	932	210/213	98,59%
TRINITY_DN555_c0_g1_	507	A0A1S3SQH	uncharacterized protein LOC106611174 OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106611174 PE=4	2E 010	140	24/22	75 000/
$\frac{11}{1000000000000000000000000000000000$	321		$\frac{5V-1}{100}$	3E-010	140	24/32	73,00%
i1	1499	B5XCG4	OX=8030 GN=UBL1 PE=2 SV=1	1E-091	707	136/156	87,18%
TRINITY_DN929_c0_g1_			Ubiquitin-like protein 1 OS=Salmo salar (Atlantic salmon)				
i9	3068	B5XCG4	OX=8030 GN=UBL1 PE=2 SV=1	4E-083	680	133/156	85,26%
TRINITY_DN991_c0_g1_	1332	A0A1S3SK2	parvalbumin, thymic CPV3-like OS=Salmo salar (Atlantic salmon) OX=8030 GN=L OC106610070 PE=3 SV=1	2E 060	540	108/100	00 08%
17	1552	1	samon $OA=8030$	2E-009	549	100/109	<i>99</i> ,08 <i>%</i>
TRINITY_DN966_c2_g1_ i2	2428	A0A1S3LE9 7	(Atlantic salmon) OX=8030 GN=LOC106566022 PE=4 SV=1	1E-164	1246	269/270	99,63%
TRINITY_DN963_c0_g1_ i4	4665	A0A1S3S5D 9	ATP-citrate synthase OS=Salmo salar (Atlantic salmon) OX=8030 GN=LOC106607281 PE=3 SV=1	0	5621	1082/1130	95,75%
TRINITY_DN4563_c0_g1 _i4	2197	B5X3W8	Galectin-3-binding protein OS=Salmo salar (Atlantic salmon) OX=8030 GN=LG3BP PE=2 SV=1	0	2816	559/600	93,17%
TRINITY_DN4564_c0_g1 _i8	4199	no hits					

1	2	3	Λ	5	6	7	8
1	2	5	Figure 1 transducer and activator of transariation OS-Salma	5	0	,	0
TDINUTY DN4577 of al			Signal transducer and activator of transcription $OS=Sanno$				
1KINI11_DN43/7_C0_g1 :7	2006	C7EV92	salar (Auanuc salmon) $OA=8050 \text{ GN}=51\text{ A I I a PE}=2$	0	2777	720/750	01 960/
1/	3000	C/E185	SV=1	0	5///	120/139	94,80%
			Signal transducer and activator of transcription OS=Salmo				
TRINITY_DN4577_c0_g1		~~~~~	salar (Atlantic salmon) OX=8030 GN=STAT1a PE=2				
	3612	C7EY83	SV=1	0	3740	713/754	94,56%
			UPF0687 protein C20orf27 homolog OS=Salmo salar				
TRINITY_DN1667_c0_g2		A0A1S3SD	(Atlantic salmon) OX=8030 GN=LOC106608870 PE=4				
_i1	2284	W3	SV=1	1E-113	876	166/179	92,74%
			transmembrane protein 229B-like isoform X1 OS=Salmo				
TRINITY DN1673 c3 g2		A0A1S3N2H	salar (Atlantic salmon) OX=8030 GN=LOC106576756	0.0000			
i1	2170	7	PE=4 SV=1	2	98	19/24	79.17%
			dehydrogenase/reductase SDR family member 12-like				,
TRINITY DN1686 c0 g1		A0A1S3NPX	isoform X1 OS=Salmo salar (Atlantic salmon) OX=8030				
i1	3765	7	GN=L OC106580690 PF=4 SV=1	0	1599	297/305	97 38%
	5705	,	uncharacterized protein LOC106612174 OS-Solmo color	0	1377	2711303	77,3070
TDINITY DN6946 at at		A 0 A 182T22	(Atlantia calman) OX-9020 CN-L OC105612174 DE-4				
1KIN111_DN0840_C0_g1 :7	1171	AUA155122	(Attainuc saimoii) $OA=8050 GN=LOC1000151/4 PE=4$	50 007	071	61/150	40 670/
	11/1	9	SV=1	5E-027	271	01/150	40,67%
TRINITY_DN1963_c0_g2			Carboxypeptidase OS=Salmo salar (Atlantic salmon)	_			
	1927	B5X2W5	OX=8030 GN=PPGB PE=2 SV=1	0	2411	448/471	95,12%
TRINITY_DN1962_c2_g2		A0A1S3M0	Ig-like domain-containing protein OS=Salmo salar				
_i1	1587	Q5	(Atlantic salmon) OX=8030 GN=myp0 PE=4 SV=1	3E-123	927	212/215	98,60%
			Ig-like domain-containing protein OS=Salmo salar				
TRINITY DN1962 c2 g2		A0A1S3R68	(Atlantic salmon) OX=8030 GN=LOC106600490 PE=4				
	1752	0	SV=1	8E-115	876	209/211	99,05%

1	2	3	4	5	6	7	8
TRINITY_DN1962_c1_g2		A0A1S3NN	Clathrin heavy chain OS=Salmo salar (Atlantic salmon)	0,0000			
_i1	1574	W9	OX=8030 GN=LOC106580423 PE=3 SV=1	0002	139	24/38	63,16%
			Ig-like domain-containing protein OS=Salmo salar				
TRINITY_DN1962_c2_g1		A0A1S3R68	(Atlantic salmon) OX=8030 GN=LOC106600490 PE=4				
i1	853	0	SV=1	2E-119	877	200/202	99,01%
			Ig-like domain-containing protein OS=Salmo salar				
TRINITY_DN1962_c2_g1		A0A1S3R68	(Atlantic salmon) OX=8030 GN=LOC106600490 PE=4				
_i6	1676	0	SV=1	4E-115	876	209/211	99,05%
			Signal transducer and activator of transcription OS=Salmo				
TRINITY_DN1956_c1_g1		A0A1S3PLN	salar (Atlantic salmon) OX=8030 GN=LOC106586142				
_i8	1664	1	PE=3 SV=1	6E-115	919	170/202	84,16%
TRINITY_DN739_c0_g1_		A0A1S3S8C	Gap junction protein OS=Salmo salar (Atlantic salmon)				
i2	1996	6	OX=8030 GN=LOC106607775 PE=3 SV=1	5E-103	819	164/165	99,39%
			solute carrier family 12 member 2-like isoform X1				
TRINITY_DN749_c0_g1_		A0A1S3PT2	OS=Salmo salar (Atlantic salmon) OX=8030				
i1	3239	5	GN=LOC106587038 PE=4 SV=1	0	3193	601/606	99,17%
			solute carrier family 12 member 2-like isoform X1				
TRINITY_DN749_c0_g1_		A0A1S3PT2	OS=Salmo salar (Atlantic salmon) OX=8030				
i12	3914	5	GN=LOC106587038 PE=4 SV=1	0	4600	881/887	99,32%
			A4_EXTRA domain-containing protein OS=Salmo salar				
TRINITY_DN795_c0_g1_		A0A1S3N8D	(Atlantic salmon) OX=8030 GN=LOC106577862 PE=4				
i4	4651	9	SV=1	0	2000	430/434	99,08%
TRINITY_DN793_c0_g2_			IGv domain-containing protein OS=Salmo salar (Atlantic				
i8	3200	D0UGD1	salmon) OX=8030 GN=LOC100194553 PE=4 SV=1	6E-121	956	218/277	78,70%

1	2	3	4	5	6	7	8
TRINITY_DN793_c0_g2_			IGv domain-containing protein OS=Salmo salar (Atlantic				
i5	1765	D0UGD1	salmon) OX=8030 GN=LOC100194553 PE=4 SV=1	2E-124	945	214/277	77,26%
TRINITY_DN793_c0_g2_			IGv domain-containing protein OS=Salmo salar (Atlantic				
i7	1214	D0UGC3	salmon) OX=8030 GN=VHSV PE=4 SV=1	1E-144	1060	219/253	86,56%
			fibroblast growth factor-binding protein 2-like OS=Salmo				
TRINITY_DN792_c1_g1_		A0A1S3N5	salar (Atlantic salmon) OX=8030 GN=LOC106577133				
i1	1227	M7	PE=4 SV=1	2E-090	697	172/198	86,87%
TRINITY_DN725_c1_g1_			Catechol O-methyltransferase OS=Salmo salar (Atlantic				
i1	1389	B5XEQ8	salmon) OX=8030 GN=COMT PE=2 SV=1	2E-180	1301	244/256	95,31%
			Ras-GEF domain-containing protein OS=Salmo salar				
TRINITY_DN736_c1_g1_		A0A1S3R78	(Atlantic salmon) OX=8030 GN=LOC106600822 PE=4				
i11	4951	8	SV=1	0	3044	618/622	99,36%
TRINITY_DN2567_c0_g3		A0A1S3T2S	Aldehyde dehydrogenase OS=Salmo salar (Atlantic				
_i1	1780	1	salmon) OX=8030 GN=LOC106613311 PE=3 SV=1	0	1614	306/330	92,73%
			CRAL-TRIO domain-containing protein OS=Salmo salar				
TRINITY_DN2558_c0_g1		A0A1S3PNP	(Atlantic salmon) OX=8030 GN=LOC106586460 PE=4				
_i4	2907	5	SV=1	0	3508	698/738	94,58%
TRINITY_DN13595_c0_g		A0A1S3NK	complexin-4-like OS=Salmo salar (Atlantic salmon)				
1_i1	1594	Y7	OX=8030 GN=LOC106580037 PE=4 SV=1	4E-080	630	125/126	99,21%
			Fork-head domain-containing protein OS=Salmo salar				
TRINITY_DN10386_c0_g		A0A1S3PW	(Atlantic salmon) OX=8030 GN=LOC106588000 PE=4				
2_i1	3291	R1	SV=1	0	1427	308/311	99,04%
TRINITY_DN16701_c0_g		A0A1S3QM	protein NOV-like isoform X1 OS=Salmo salar (Atlantic				
1_i3	3321	M6	salmon) OX=8030 GN=LOC106594376 PE=4 SV=1	0	1666	324/351	92,31%

1	2	3	4	5	6	7	8
TRINITY_DN8318_c0_g2		A0A1S3MLJ	membrane protein MLC1 OS=Salmo salar (Atlantic				
_i6	1530	2	salmon) OX=8030 GN=mlc1 PE=4 SV=1	0	1591	382/397	96,22%
			immunoglobulin lambda-like polypeptide 1 OS=Salmo				
TRINITY_DN2985_c1_g1		A0A1S3QK	salar (Atlantic salmon) OX=8030 GN=LOC106592986				
_i7	1604	C1	PE=4 SV=1	3E-072	589	116/124	93,55%
TRINITY_DN2985_c1_g1		A0A1S3S0L	Ig heavy chain Mem5-like OS=Salmo salar (Atlantic				
_i3	2284	7	salmon) OX=8030 GN=LOC106606375 PE=4 SV=1	9E-062	530	104/110	94,55%
			ras GTPase-activating protein-binding protein 2-like				
TRINITY_DN2919_c1_g1		A0A1S3SL1	isoform X1 OS=Salmo salar (Atlantic salmon) OX=8030				
_i6	4617	2	GN=LOC106610282 PE=4 SV=1	1E-144	1168	309/320	96,56%
TRINITY_DN2946_c0_g1		A0A1S3M0	Transcription factor BTF3 OS=Salmo salar (Atlantic				
_i6	1732	U0	salmon) OX=8030 GN=LOC106569747 PE=3 SV=1	3E-079	631	148/161	91,93%
TRINITY_DN2917_c1_g1		A0A1S3S1C	heme oxygenase 2-like OS=Salmo salar (Atlantic salmon)				
_i8	3176	7	OX=8030 GN=LOC106606500 PE=4 SV=1	0	1555	305/315	96,83%
			Guanine nucleotide-binding protein subunit gamma				
TRINITY_DN491_c0_g2_		A0A1S3QG	OS=Salmo salar (Atlantic salmon) OX=8030				
i2	1212	M2	GN=LOC106592341 PE=3 SV=1	4E-037	326	63/66	95,45%
TRINITY_DN418_c0_g1_			Mx2 protein OS=Salmo salar (Atlantic salmon) OX=8030				
i1	1350	Q98991	GN=mx2 PE=2 SV=1	0	2068	390/402	97,01%
TRINITY_DN418_c0_g1_			Mx1 protein OS=Salmo salar (Atlantic salmon) OX=8030				
i12	3049	Q98990	GN=mx1 PE=2 SV=1	0	3089	587/623	94,22%
			interferon-induced protein with tetratricopeptide repeats 5-				
TRINITY_DN484_c0_g1_		A0A1S3Q47	like isoform X1 OS=Salmo salar (Atlantic salmon)				
i9	4707	8	OX=8030 GN=LOC106589386 PE=4 SV=1	0	1717	343/464	73,92%

1	2	2	4	5	(7	0
1	2	3	4	5	6	/	8
TRINITY_DN430_c0_g1_			Myelin proteolipid protein OS=Salmo salar (Atlantic				
i6	2176	B5X3R4	salmon) OX=8030 GN=MYPR PE=2 SV=1	5E-157	1171	251/258	97,29%
TRINITY_DN302_c0_g1_		A0A1S3MM	RRM domain-containing protein OS=Salmo salar (Atlantic				100,00
i1	1284	A2	salmon) OX=8030 GN=LOC106573597 PE=4 SV=1	5E-050	429	82/82	%
TRINITY_DN332_c1_g1_							
i4	1232	no hits					
			HEPN domain-containing protein OS=Salmo salar				
TRINITY_DN397_c0_g1_		A0A1S3SPC	(Atlantic salmon) OX=8030 GN=LOC106610967 PE=4		1924		
i1	12575	9	SV=1	0	4	3733/4161	89,71%
			HEPN domain-containing protein OS=Salmo salar				
TRINITY_DN397_c0_g1_		A0A1S3SPC	(Atlantic salmon) OX=8030 GN=LOC106610967 PE=4		2017		
i3	13568	9	SV=1	0	9	3908/4313	90,61%
TRINITY_DN343_c0_g1_							
i2	1600	no hits					
			ATP-sensitive inward rectifier potassium channel 10-like				
TRINITY_DN5441_c0_g1			isoform X1 OS=Salmo salar (Atlantic salmon) OX=8030				
_i10	1596	A0A1S3R6J6	GN=LOC106600497 PE=3 SV=1	0	1628	380/385	98,70%
TRINITY_DN5459_c0_g1			TIR domain-containing protein OS=Salmo salar (Atlantic				
_i1	3642	W8W3N9	salmon) OX=8030 GN=TLR PE=2 SV=1	0	4383	926/975	94,97%
TRINITY_DN20610_c0_g		A0A1S3LED	Tetraspanin OS=Salmo salar (Atlantic salmon) OX=8030				
1_i1	2204	5	GN=LOC106566039 PE=3 SV=1	4E-108	842	199/218	91,28%
TRINITY_DN7489_c0_g1		A0A1S3S0L	Ig heavy chain Mem5-like OS=Salmo salar (Atlantic	0,0000			
_i5	787	7	salmon) OX=8030 GN=LOC106606375 PE=4 SV=1	002	122	31/92	33,70%
TRINITY_DN7489_c0_g1		A0A1S3S0L	Ig heavy chain Mem5-like OS=Salmo salar (Atlantic				
_i12	1349	7	salmon) OX=8030 GN=LOC106606375 PE=4 SV=1	8E-018	205	48/122	39,34%

1	2	2	4	_		7	0
1	2	3	4	5	6	/	8
TRINITY_DN12799_c0_g			IGF binding protein 2 precursor OS=Salmo salar (Atlantic				
1_i2	2148	M4Q564	salmon) OX=8030 GN=IGFBP-2A PE=2 SV=1	0	1371	268/280	95,71%
TRINITY_DN9326_c0_g1							
_i4	3325	no hits					
			tripartite motif-containing protein 39 isoform X1				
TRINITY_DN3676_c0_g1		A0A1S3N9T	OS=Salmo salar (Atlantic salmon) OX=8030 GN=tri39				
_i15	2783	5	PE=4 SV=1	0	2088	388/418	92,82%
TRINITY_DN7729_c0_g1		A0A1S3MP0	G domain-containing protein OS=Salmo salar (Atlantic				
_i6	1816	2	salmon) OX=8030 GN=LOC106573916 PE=4 SV=1	0	1568	305/353	86,40%
TRINITY_DN7716_c0_g1		A0A1S3N6L	apolipoprotein C-I-like OS=Salmo salar (Atlantic salmon)				
_i1	1058	4	OX=8030 GN=LOC106577511 PE=4 SV=1	5E-047	391	75/87	86,21%
			PH and SEC7 domain-containing protein 3-like isoform X1				
TRINITY_DN20287_c0_g		A0A1S3M9	OS=Salmo salar (Atlantic salmon) OX=8030				
1_i2	4248	X7	GN=LOC106571427 PE=4 SV=1	0	1565	309/313	98,72%
			AIG1-type G domain-containing protein OS=Salmo salar				
TRINITY_DN49_c3_g1_i		A0A1S3QG	(Atlantic salmon) OX=8030 GN=LOC106592320 PE=4				
11	2490	K9	SV=1	3E-046	428	120/146	82,19%
TRINITY_DN44_c0_g1_i			55 kDa erythrocyte membrane protein OS=Salmo salar				
13	3718	B5DG15	(Atlantic salmon) OX=8030 GN=mpp1 PE=2 SV=1	0	2079	399/418	95,45%
			neuronal membrane glycoprotein M6-a isoform X1				
TRINITY_DN75_c0_g1_i		A0A1S3RDL	OS=Salmo salar (Atlantic salmon) OX=8030				
1	3973	4	GN=LOC106602380 PE=4 SV=1	3E-124	992	188/192	97,92%
			IRF tryptophan pentad repeat domain-containing protein				
TRINITY_DN72_c6_g1_i			OS=Salmo salar (Atlantic salmon) OX=8030 GN=IRF-7B				
2	1858	D2SR00	PE=2 SV=1	0	1810	374/460	81,30%

1	2	3	4	5	6	7	8
			coiled-coil domain-containing protein 136-like isoform X1				
TRINITY_DN98_c1_g1_i		A0A1S3KR	OS=Salmo salar (Atlantic salmon) OX=8030				
1	938	X2	GN=LOC106561691 PE=4 SV=1	2E-084	669	226/263	85,93%
TRINITY_DN10638_c0_g		A0A1S3KU1	semaphorin-7A-like isoform X1 OS=Salmo salar (Atlantic				
1_i8	2907	0	salmon) OX=8030 GN=LOC106562116 PE=3 SV=1	0	2840	527/615	85,69%
			Protein kinase domain-containing protein OS=Salmo salar				
TRINITY_DN3913_c0_g1		A0A1S3MF7	(Atlantic salmon) OX=8030 GN=LOC106572314 PE=3				
_i4	2460	3	SV=1	0	1656	309/315	98,10%
			pituitary tumor-transforming gene 1 protein-interacting				
TRINITY_DN3945_c0_g1		A0A1S3NH	protein-like OS=Salmo salar (Atlantic salmon) OX=8030				
_i4	1454	W8	GN=LOC106579409 PE=4 SV=1	2E-078	621	160/180	88,89%
			tripartite motif-containing protein 2 isoform X1 OS=Salmo				
TRINITY_DN4052_c0_g1		A0A1S3RGZ	salar (Atlantic salmon) OX=8030 GN=LOC106602744				
_i2	3140	5	PE=4 SV=1	0	3935	736/750	98,13%
			mitochondrial import receptor subunit TOM20 homolog				
TRINITY_DN4633_c0_g2			OS=Salmo salar (Atlantic salmon) OX=8030 GN=TOM20				
_i2	654	B5X9F3	PE=2 SV=1	6E-030	271	59/75	78,67%
			E3 ubiquitin-protein ligase UBR5 isoform X1 OS=Salmo				
TRINITY_DN4625_c0_g1		A0A1S3RW	salar (Atlantic salmon) OX=8030 GN=LOC106605530				
_i10	4453	X1	PE=4 SV=1	0	5391	1302/1342	97,02%
			HECT domain-containing protein OS=Salmo salar				
TRINITY_DN4634_c0_g1		A0A1S3SL1	(Atlantic salmon) OX=8030 GN=LOC106610286 PE=4				
_i9	1718	3	SV=1	0	2597	499/574	86,93%

1	2	3	4	5	6	7	8
			AIG1-type G domain-containing protein OS=Salmo salar				
TRINITY_DN1042_c0_g1		A0A1S3QA	(Atlantic salmon) OX=8030 GN=LOC106590483 PE=4				
_i9	2706	M6	SV=1	0	2192	462/539	85,71%
			uncharacterized protein LOC106563199 isoform X1				
TRINITY_DN1096_c0_g1		A0A1S3KZC	OS=Salmo salar (Atlantic salmon) OX=8030				
_i4	2120	1	GN=LOC106563199 PE=4 SV=1	4E-034	321	104/145	71,72%
TRINITY_DN9679_c0_g1			B-cell receptor-associated protein 31 OS=Salmo salar				
_i3	3106	B5X317	(Atlantic salmon) OX=8030 GN=BAP31 PE=2 SV=1	2E-147	1131	230/235	97,87%
TRINITY_DN3284_c0_g1		A0A1S3QE1	PX domain-containing protein OS=Salmo salar (Atlantic				
_i2	1976	3	salmon) OX=8030 GN=LOC106591388 PE=4 SV=1	6E-179	1321	299/383	78,07%
			PDGF_2 domain-containing protein OS=Salmo salar				
TRINITY_DN3269_c0_g1		A0A1S3MA	(Atlantic salmon) OX=8030 GN=LOC106571482 PE=3				
_i6	3018	Q8	SV=1	7E-103	823	198/219	90,41%
			Integrase catalytic domain-containing protein OS=Salmo				
TRINITY_DN1760_c0_g1		A0A1S3SMI	salar (Atlantic salmon) OX=8030 GN=LOC100380853				
_i1	3416	5	PE=4 SV=1	3E-054	493	102/194	52,58%
			Protein kinase domain-containing protein OS=Salmo salar				
TRINITY_DN1708_c5_g1		A0A1S3MR1	(Atlantic salmon) OX=8030 GN=LOC106574304 PE=3				
_i6	3699	7	SV=1	0	1826	340/348	97,70%
			extended synaptotagmin-2-B-like isoform X1 OS=Salmo				
TRINITY_DN1705_c1_g2		A0A1S3R3A	salar (Atlantic salmon) OX=8030 GN=LOC106599471				
_i2	2820	1	PE=4 SV=1	0	1754	345/358	96,37%
TRINITY_DN1770_c0_g1			TCTP domain-containing protein OS=Salmo salar (Atlantic				
i1	1015	B5XAC1	salmon) OX=8030 GN=TCTP PE=2 SV=1	2E-117	864	167/171	97,66%

1	2	3	4	5	6	7	8
TRINITY_DN1795_c0_g1			Complement component C7 OS=Salmo salar (Atlantic				
	3725	B5X0R1	salmon) OX=8030 GN=CO7 PE=2 SV=1	0	2046	381/423	90,07%
TRINITY_DN1741_c0_g1							
_i2	1500	no hits					
TRINITY_DN1785_c2_g1							
_i1	822	no hits					
			Phosphatidylinositol-4,5-bisphosphate 4-phosphatase				
TRINITY_DN1756_c0_g1		A0A1S3SBY	OS=Salmo salar (Atlantic salmon) OX=8030				
_i6	2093	4	GN=LOC106608438 PE=4 SV=1	6E-143	1076	236/262	90,08%
			uncharacterized protein LOC106576325 OS=Salmo salar				
TRINITY_DN11538_c0_g		A0A1S3N0A	(Atlantic salmon) OX=8030 GN=LOC106576325 PE=4				
1_i8	2294	0	SV=1	2E-014	186	34/37	91,89%
TRINITY_DN2852_c0_g1							
_i3	1046	no hits					
TRINITY_DN11135_c0_g			Granulocyte colony-stimulating factor receptor OS=Salmo				
1_i2	5243	B5X2W2	salar (Atlantic salmon) OX=8030 GN=CSF3R PE=2 SV=1	0	3839	808/873	92,55%
TRINITY_DN24462_c0_g							
1_i1	356	no hits					
TRINITY_DN9114_c1_g1			dNK domain-containing protein OS=Salmo salar (Atlantic				
_i4	1241	B5X8U8	salmon) OX=8030 GN=DCK PE=2 SV=1	0	1337	246/263	93,54%
			AMP-binding domain-containing protein OS=Salmo salar				
TRINITY_DN9108_c0_g1		A0A1S3PBY	(Atlantic salmon) OX=8030 GN=LOC106584374 PE=4				
_i1	4337	4	SV=1	0	3840	729/814	89,56%
TRINITY_DN7560_c0_g1			Cathepsin S OS=Salmo salar (Atlantic salmon) OX=8030				
_i3	638	B5X3V4	GN=CATS PE=2 SV=1	6E-131	955	174/187	93,05%

1	2	3	4	5	6	7	8
TRINITY_DN7590_c0_g1			C1q domain-containing protein OS=Salmo salar (Atlantic				
_i2	1107	B5X3K9	salmon) OX=8030 GN=C1QC PE=2 SV=1	5E-092	706	204/247	82,59%
*0			×** C				

^{*}Query - исследуемая последовательность, ^{**}Hit - совпадение, ^{***}Score - оценка качества совпадения

ПРИЛОЖЕНИЕ III

Результаты анализа экспрессии генов. Наименование групп приведено согласно принятой классификации генной онтологии (Gene Ontology или GO)

Наименование группы	Доля, %
1	2
nucleobase-containing small molecule metabolic process	0,09
carbohydrate derivative metabolic process	0,11
organophosphate metabolic process	0,12
anion transport	0,12
positive regulation of immune system process	0,13
columnar/cuboidal epithelial cell differentiation	0,16
epidermal cell differentiation	0,18
establishment of protein localization to organelle	0,18
organelle localization	0,2
organonitrogen compound biosynthetic process	0,21
cellular amide metabolic process	0,22
pancreas development	0,23
regulation of immune response	0,23
regulation of organelle organization	0,25
negative regulation of phosphate metabolic process	0,26
response to cytokine	0,28
regulation of hydrolase activity	0,29
positive regulation of cellular component biogenesis	0,31
negative regulation of response to external stimulus	0,32
developmental maturation	0,33
cellular response to lipid	0,33
regulation of defense response	0,34
positive regulation of protein transport	0,34
neural crest cell differentiation	0,35
regulation of cellular protein localization	0,38
positive regulation of secretion by cell	0,39
respiratory system development	0,4

Результаты анализа экспрессии генов озерного сига

1	2
response to peptide	0,4
negative regulation of cellular component organization	0,4
regulation of cell cycle process	0,4
organelle assembly	0,41
mitotic cell cycle process	0,41
establishment of localization in cell	0,42
regulation of MAPK cascade	0,42
epithelial tube formation	0,42
positive regulation of synaptic transmission	0,43
defense response to other organism	0,43
cellular response to external stimulus	0,44
cellular response to organonitrogen compound	0,45
regulation of cell growth	0,45
regulation of cell morphogenesis involved in differentiation	0,47
response to antibiotic	0,47
positive regulation of intracellular signal transduction	0,47
cerebral cortex development	0,48
maintenance of location	0,49
cellular macromolecule catabolic process	0,5
organonitrogen compound catabolic process	0,52
developmental growth involved in morphogenesis	0,52
developmental cell growth	0,53
hippocampus development	0,53
post-embryonic animal organ development	0,54
regulation of protein secretion	0,54
inner ear morphogenesis	0,54
second-messenger-mediated signaling	0,55
regulation of developmental growth	0,55
response to calcium ion	0,57
membrane organization	0,57
negative regulation of cell population proliferation	0,58
visual perception	0,58

1	2
associative learning	0,61
multicellular organismal signaling	0,61
leukocyte activation	0,63
positive regulation of Wnt signaling pathway	0,63
neuron death	0,66
regulation of calcium ion transport	0,68
peptidyl-amino acid modification	0,69
reproductive structure development	0,69
positive regulation of catalytic activity	0,7
regulation of exocytosis	0,73
response to glucose	0,73
hindbrain development	0,73
post-embryonic development	0,73
cellular response to oxygen-containing compound	0,74
regulation of intracellular transport	0,74
regulation of DNA-binding transcription factor activity	0,75
adult locomotory behavior	0,75
dorsal/ventral pattern formation	0,76
response to mechanical stimulus	0,76
response to light stimulus	0,77
cellular protein-containing complex assembly	0,78
regulation of peptide hormone secretion	0,78
germ cell development	0,79
skeletal system morphogenesis	0,81
regulation of cation transmembrane transport	0,82
regulation of multi-organism process	0,82
negative regulation of apoptotic process	0,83
positive regulation of apoptotic process	0,83
gland development	0,85
glial cell differentiation	0,85
hemopoiesis	0,87
negative regulation of transcription by RNA polymerase II	0,87

1	2
positive regulation of cellular component movement	0,88
negative regulation of protein modification process	0,88
positive regulation of neuron projection development	0,88
memory	0,91
endocytosis	0,92
inorganic cation transmembrane transport	0,92
cell adhesion	0,96
positive regulation of locomotion	0,97
muscle structure development	0,98
ossification	0,99
proteolysis	0,99
synapse assembly	1,01
protein localization to membrane	1,03
positive regulation of protein phosphorylation	1,05
axon guidance	1,05
negative regulation of molecular function	1,07
cellular response to organic cyclic compound	1,07
G protein-coupled receptor signaling pathway	1,09
ameboidal-type cell migration	1,09
lipid metabolic process	1,1
actin filament-based process	1,1
positive regulation of transcription by RNA polymerase II	1,11
cellular response to stress	1,13
negative regulation of neurogenesis	1,14
response to nutrient levels	1,14
positive regulation of cell population proliferation	1,15
negative regulation of transport	1,16
response to wounding	1,17
cellular response to hormone stimulus	1,17
intracellular protein transport	1,17
cellular calcium ion homeostasis	1,19
camera-type eye development	1,19

1	2
response to toxic substance	1,2
regulation of membrane potential	1,21
chordate embryonic development	1,24
heart development	1,32
cell fate commitment	1,36
synaptic vesicle exocytosis	1,37
cytoskeleton organization	1,39
regulation of cell migration	1,41
regulation of synapse organization	1,42
regulation of synaptic plasticity	1,47
regulation of heart contraction	1,56
cellular response to growth factor stimulus	1,58
negative regulation of signal transduction	1,74
response to drug	1,87

Таблица. Результаты анализа экспрессии генов байкальского омуля

Наименование группы	Доля, %
1	2
carbohydrate derivative metabolic process	0,07
cellular ion homeostasis	0,18
organophosphate metabolic process	0,18
leukocyte mediated immunity	0,2
positive regulation of cellular component biogenesis	0,23
organonitrogen compound biosynthetic process	0,23
regulation of immune effector process	0,25
organelle localization	0,26
cellular amide metabolic process	0,27
establishment of localization in cell	0,28
cellular response to lipid	0,29
mitotic cell cycle process	0,31
positive regulation of secretion by cell	0,34

1	2
developmental growth involved in morphogenesis	0,35
developmental maturation	0,35
positive regulation of protein transport	0,36
response to metal ion	0,38
regulation of organelle organization	0,38
sensory organ morphogenesis	0,39
regulation of hydrolase activity	0,4
sensory perception	0,42
positive regulation of defense response	0,44
post-embryonic development	0,45
negative regulation of transcription by RNA polymerase II	0,47
symbiotic process	0,48
cellular macromolecule catabolic process	0,48
regulation of cellular response to stress	0,5
immune response-regulating signaling pathway	0,53
regulation of hormone levels	0,53
response to mechanical stimulus	0,53
gland development	0,53
axon guidance	0,53
regulation of developmental growth	0,53
cellular process involved in reproduction in multicellular organism	0,54
neurotransmitter transport	0,54
regulation of protein secretion	0,55
inorganic cation transmembrane transport	0,56
enzyme linked receptor protein signaling pathway	0,56
positive regulation of cell migration	0,58
regionalization	0,59
negative regulation of cell population proliferation	0,59
cellular protein-containing complex assembly	0,6
regulation of neurotransmitter levels	0,61
protein catabolic process	0,63

1	2
peptidyl-amino acid modification	0,64
positive regulation of apoptotic process	0,64
response to radiation	0,64
regulation of DNA-binding transcription factor activity	0,64
positive regulation of neuron projection development	0,65
signal release	0,65
telencephalon development	0,65
regulation of anatomical structure size	0,66
gamete generation	0,66
protein localization to organelle	0,67
divalent metal ion transport	0,67
inflammatory response	0,67
ameboidal-type cell migration	0,69
regulation of cell growth	0,69
positive regulation of transcription by RNA polymerase II	0,69
regulation of transmembrane transport	0,69
lymphocyte activation	0,7
cellular response to organonitrogen compound	0,7
regulation of cell morphogenesis	0,71
locomotory behavior	0,71
activation of immune response	0,72
neuron death	0,73
regulated exocytosis	0,74
tube morphogenesis	0,75
regulation of system process	0,75
muscle structure development	0,76
embryonic organ morphogenesis	0,76
metal ion homeostasis	0,76
regulation of protein kinase activity	0,76
negative regulation of neurogenesis	0,77
G protein-coupled receptor signaling pathway	0,78
regulation of synapse organization	0,78

1	2
blood vessel development	0,79
response to nutrient levels	0,79
intracellular protein transport	0,79
regulation of synaptic plasticity	0,8
negative regulation of transport	0,81
positive regulation of multi-organism process	0,81
morphogenesis of an epithelium	0,81
response to bacterium	0,81
response to toxic substance	0,82
regulation of metal ion transport	0,83
cell fate commitment	0,84
actin filament-based process	0,84
cellular response to organic cyclic compound	0,85
small molecule metabolic process	0,85
cellular response to hormone stimulus	0,85
response to wounding	0,87
negative regulation of apoptotic process	0,88
regulation of response to biotic stimulus	0,88
positive regulation of cell population proliferation	0,89
negative regulation of cellular protein metabolic process	0,89
glial cell differentiation	0,9
regulation of cellular catabolic process	0,91
regulation of cell adhesion	0,92
negative regulation of molecular function	0,92
positive regulation of catalytic activity	0,93
eye development	0,96
positive regulation of response to external stimulus	0,97
cell-cell adhesion	0,98
epithelial cell differentiation	0,98
negative regulation of cellular component organization	1
regulation of MAPK cascade	1,02
learning or memory	1,03
Продолжение таблицы

1	2
membrane organization	1,06
endocytosis	1,07
proteolysis	1,08
blood circulation	1,09
leukocyte differentiation	1,09
reproductive structure development	1,1
skeletal system development	1,1
regulation of cellular localization	1,12
cellular response to growth factor stimulus	1,12
regulation of membrane potential	1,14
regulation of cytokine production	1,15
cellular response to cytokine stimulus	1,17
heart development	1,19
positive regulation of intracellular signal transduction	1,22
regulation of cell cycle	1,24
regulation of vesicle-mediated transport	1,25
chordate embryonic development	1,26
lipid metabolic process	1,27
cytoskeleton organization	1,28
cellular response to oxygen-containing compound	1,29
innate immune response	1,33
negative regulation of signal transduction	1,41
positive regulation of protein phosphorylation	1,51
response to drug	1,52
anatomical structure formation involved in morphogenesis	1,82